

Phase II Geoenvironmental Site Assessment Rye Bank Fields

> Reference:13-355-R2-2 Date: March 2020

PHASE II GEOENVIRONMENTAL SITE ASSESSMENT

©e3p

Rye Bank Fields Ryebank Road, Manchester, Chorlton M21 9LU

Prepared for:

Manchester Metropolitan University

Report Ref: 13-533-R2-2 Date Issued: 30/03/2020

E3P

Heliport Business Park Liverpool Road Eccles Manchester M30 7RU

+ 44 (0) 161 707 9612 https://e3p.co.uk/

Registered in England CRN: 807255262

QUALITY ASSURANCE

PROJECT NUMBER		13-533	
VERSION	Version 1	Version 2	Version 3
REMARKS	Final	Updated following receipt of utility and ecology assessments.	
DATE	March 2020	March 2020	
PREPARED BY	E. Moss	R. Hodnett	
QUALIFICATIONS	BSc (Hons), FGS	BSc (Hons), FGS	
SIGNATURE	EMOS	RHadnett	
CHECKED BY	R. Hodnett	M. Dyer	
QUALIFICATIONS	BSc (Hons), FGS	BSc, MSc, PIEMA, FGS, CEnv	
SIGNATURE	RHodnett	All D.D	
AUTHORISED BY	M. Dyer	M. Dyer	
QUALIFICATIONS	BSc, MSc, PIEMA, FGS, CEnv	BSc, MSc, PIEMA, FGS, CEnv	
SIGNATURE	All D.D	JAL D.D	

EXECUTIVE SUMMARY

EXECUTIVE SUN			
Site Address	Land north of Ryeban M21 9LU	k Road / Longford Road, Chorlton, Manchester,	
Grid Reference	E 381090, N 394580		
Site Area	4.60 Ha		
Current Site Use		irregular shaped parcel of land located to the north of ford Road in Chorlton referred to as Ryebank Fields.	
	by overgrown grasses dense around the peri the centre of the s	I predominantly used by walkers. The site is surfaced and semi mature and mature trees, which are notably meter of the site. The Nico ditch is known to intersect ite which is a linear earthwork stretching across and is of archaeological importance.	
	present to the south e	es present on site, however an area of hardstanding is east of the site. A bund surfaced by grass is located f hard standing in the south east of the site. A number rersect the site.	
	The site is predomination north.	ntly flat in topography but gradually falls from south to	
Proposed Development	E3P understands that Manchester Metropolitan University (MMU) are considering the proposed divestment of their asset at Ryebank Fields, Chorlton which is deemed to be surplus to requirement. As part of the divestment a Development Framework was approved by Manchester City Council in June 2019 that promotes a high-quality residential development across the site with associated gardens, estate roads and infrastructure. The Development Framework contains the proposed development layout for the site.		
	Drift Geology	Glaciofluvial Sheet Deposits (North West)- SAND and GRAVEL Glacial Till (Majority of site) - SAND, GRAVEL and CLAY)	
	Bedrock Geology	Wilmslow SANDSTONE Formation - SANDSTONE	
Environmental Setting	Hydrogeology	The site is predominantly underlain by a Secondary Undifferentiated aquifer with Secondary A aquifer in the north west of the site within the drift geology, overlying a Principal aquifer (bedrock geology). There are three groundwater abstraction points situated within 1 km of the site which are operated by Trafford Metal Finishers Manchester Ltd utilised as process water. The three abstraction licenses relate to these boreholes.	
	Hydrology	The Nico Ditch (referred to as a drain) is intersecting the centre of the site however it is noted to be dry. A drain is located 156 m west of the site. Moreover, United Utilities have indicated that the route of the Thirlmere Aqueduct runs across the northern boundary of the site. Longford Brook (culverted) is located circa 210 m west of the site. Longford Brook historically flowed through the site, however has since been diverted.	

	Flood Risk	The site is situated in a Flood Risk Zone 1; defined as land assessed as having less than 1 in 1,000 annual probability of river or sea flooding (< 0.1%).
Natural Landform and Geomorphology	in origin, with geomo- periods during the Qu	ntly underlain by till (Diamicton), historically glaciogenic orphologies associated with glacial and inter-glacial laternary. The underlying bedrock mainly comprises ow Sandstone Formation). These sedimentary rocks and marine in origin
	clay pit for an adjace	ly undergone extensive quarrying during its use as a nt brick works. Following its excavation, the site had e materials in order to create a level platform.
Site History	with Longford Brook tra was present in the co western corner. In the south-east of the site; boundary of the site. ponds in the north of site likely to be indicat all previous features to west to east. An unspe	ggests that the site was undeveloped agricultural land aversing the site west to east. In the late 1800's a pond entre of the site with a small structure in the south- early 1900's residential properties were present in the furthermore, a brick works is present along the eastern Mapping from 1930–1938 identifies a clay pit and two the site, with embankments present across the entire tive of areas of excavation. Mapping from 1950 show o no longer be present, with a drain traversing the site ecified building was present in the west of the site from 1981 and was demolished at some point between 2003
Previous Reports	WSP Parsons Brincke Ref: 70014100, dated along with an Environ 2015, noted Confider summarised in Section	ed with a Geo-Environmental Appraisal prepared by erhoff for Manchester Metropolitan University (Report 1 18the September 2015, noted Highly Confidential) mental Input (Report Ref: 70014100, dated October ntial). The pertinent points from these reports are on 2.4 of the E3P Phase I Geoenvironmental Site Ref: 13-533-R1-2, dated March 2020).
	records has identified	not been completed however a review of online service an intermediate pressure gas main to dissect the site ow pressure gas main present in the south-west of the
Utility Locations	BT and electricity ser corner of the site.	vice infrastructure are present in the south-western
	of the site with an over northern boundary are	oted the presence of a surface water sewer in the south flow sewer within the north of the site. Adjacent to the a 3 trunk mains one of which is named the Thirlmere reated Water Trunk Main.
Landfill Sites and Ground Gases	However, mapping cir subject to historical in particular historical ma slopes, infilled clay pit ten locations of potent	r historical landfill sites within 250 m of the subject site. rca 1908 and 1989 indicates that the site has been filling (pits, quarries, pond, marsh, river, streams). In apping shows significant topographical changes, steep s and ponds within the site boundary. There are also ially infilled land within 250 m of the site from historical to 1955 with an unknown input type including two on- ig.
Radon	Unaffected – no specia	al precautions required.
Coal Mining/Land Stability	The site is not located	in a coal mining affected area.

Hazardous Installations

SITE INVESTIGATION

OTTE INVEOTIONTION	
Ground Investigation Works	E3P has completed an intrusive ground investigation comprising 30 mechanically excavated trial pits, 12 window sample probeholes, two cable percussion boreholes, ten Dynamic Cone Penetrometers and the installation of environmental monitoring installations.
Ground Conditions	
	Drift deposits were only encountered within CP101 at 12.70 m and 14.95 m bgl and within CP102 at 10.20 m and 14.95 m bgl comprising a very stiff high strength sandy CLAY with bands of fine to medium SAND.

Ground Conditions <i>Cont.</i>	SOLID
	The solid bedrock geology was not encountered within any exploratory hole locations and was not located within any BGS boreholes in close proximity to the site.
	GROUNDWATER
	Groundwater strikes were encountered as strikes and seepages between 1.20 m and 4.30 m bgl.

CONTAMINATED LAND ASSESSMENT

OUTTAININATED LAND	ACCECOMENT
	The Tier 1 human health risk assessment identifies site wide concentrations of heavy metals, non-volatile PAHs, and non-volatile TPH compounds that would present unacceptable degrees of theoretical risk to the identified receptors associated with direct exposure pathways. As such, it will be necessary to design and construct the proposed development in a manner that will ensure suitably validated cover systems to all areas of private garden, soft landscaping and public open space.
	Localised areas of volatile naphthalene, mercury and TPH impact has been identified within discreet locations (hotspots); these compounds pose a theoretical risk associated with volatilisation and subsequent ingress into the proposed dwellings (indoor air). Further testing should be completed to confirm the type of mercury present and whether it presents a vapour risk. Should the mercury present a vapour risk a hotspot removal should be undertaken.
	It is recommended that a Tier 2 vapour risk assessment is completed, as due to the homogenous nature of the fill materials it cannot be proven at this juncture if volatile compounds are present throughout the Made Ground or isolated within the locations identified thus far.
Human Health	Following the Tier 2 vapour risk assessment should these locations be deemed as hotspots, it will be necessary to delineate the extent of impact and ensure all material is excavated, analysed, treated for either reuse within an area of no sensitivity (post treatment) or, alternatively, removed from site.
	Asbestos was identified in four samples out of seventeen submitted for analysis. Asbestos in the form of chrysotile and amosite loose fibrous debris, loose fibres, bitumen and hard / cement type material. Asbestos was identified within WS102 at 3.20 m bgl, WS112 at 2.30 m bgl, WS110 at 0.50 m bgl and WS101 a 1.80 m bgl. Asbestos piping and sheeting were visually identified in TP116 and TP119 respectively; during the remediation and enabling works these should be removed from site by a licensed asbestos removal contractor. Impacted soils should be managed according to the E3P asbestos risk mitigation conceptual site model.
	There have been no VOCs identified above the LOD within the soil analysis. The SVOC 2-Methylnaphthalene was identified above the limit of detection in TP116 at 1.50 m bgl (0.5 mg/kg), TP127 (4.0 mg/kg) and WS102 (3.20 mg/kg) which was identified in the Made Ground deposits associated with the infilling of the clay pits.
	There are no suitable sources of topsoil or subsoil available on the site.
	Further site investigation will be required in the west of the site where access was restricted due to the presence of overgrown vegetation, a gas main and semi-improved neutral grassland.

Controlled Waters	Elevated concentrations of heavy metals, cyanide, PAH, TPH and VOCs have been identified within groundwater and leachate samples. Given that the site is predominantly underlain by CLAY this may afford some protection to the underlying Principal aquifer in the bedrock. Off-site surface water features are not considered at risk as cohesive CLAY drift deposits will limit the lateral migration of determinants. Given the sensitivity of the underlying Principal aquifer and proximity of surface water receptors E3P recommend that additional groundwater and leachate analysis will be required to delineate any previously identified contamination and to complete m-BAT bioavailability analysis of heavy metals along with a detailed P20 DQRA for groundwater. During the remediation and enabling works, hotspots will need to be delineated and validated through chemical analysis; additionally further leachate analysis will be required when engineering the Made Ground to ensure that no unacceptable materials are placed that could pose a risk to controlled waters. In addition, if any tanks or visually impacted waters with olfactory evidence are identified further risk assessment will be required.
Ground Gas	 Preliminary ground gas monitoring suggests that the northern sector of the site can be predominantly classified as Green/CS1, and in these areas it is considered that gas protection measures will not be required. However, the south of the site has been assessed as being Amber 2 / CS3 and Red/CS4. The gas source is deemed to be associated with the underlying Made Ground deposits. As WS102 and WS103 have been assessed as being Red/ CS4 this would suggest this area is not suitable for residential development. It is suggested that additional monitoring wells are placed in the south of the site to fully delineate the zone of gas risk along with a phase of continuous ground gas monitoring. Full ground gas protection measures to be confirmed following completion of monitoring regime. A provision for the installation of ground gas protection measures adhering to Amber 2 / CS3 with VOC vapour membranes should be put in place.
Potable Water Infrastructure	This will need to be confirmed following the completion of a UKWIR risk assessment. Post-remediation and enabling works ground conditions may be different from those identified during this site investigation however it is likely PE Barrier Pipe will be required.

GEOTECHNICAL ASSESSMENT

Underground Obstructions	Concrete and brick obstructions have been encountered within the Made Ground.
	During a phase of cut-and-fill enabling works to create a developable platform, all below-ground obstructions will require grubbing out to the base of the Made Ground to enable the construction of proposed plots.
Allowable Bearing Pressure (ABP)	Based on the assessment of the relative undrained shear strength, relative in-situ densities and corresponding safe net allowable bearing pressure, the suitable target founding stratum has been identified as the underlying stiff to very stiff CLAY. The CLAY has been noted to have an ABP in the region of $150 - 375 \text{ kN/m}^2$.
Foundation Options	Based on the assessment of the relative undrained shear strength, relative in-situ densities and corresponding safe net allowable bearing pressure, the suitable target founding stratum has been identified as the underlying stiff to very stiff CLAY.

Foundation Options Continued	The site is entirely underlain by deep Made Ground to depths of up to 12.70 m bgl. The underlying Made Ground predominantly comprises a sand or gravel containing ash, which has been assessed as very loose to dense. A programme of remediation and enabling works will be required to remove the extensive buried obstructions and cut/fill the site to provide suitable development platform levels. Due to the presence of deep Made Ground throughout the site it is considered that the most suitable foundation solution would be to utilise a driven pile into the natural underlying stiff to very stiff CLAY or a implement a raft foundation solution. Due to the age of the backfill material the near surface stratum may have been subject to long term total self-weight settlement with pore water dissipation at varying degrees, it is therefore considered that significant future consolidation of this material would be unlikely in the unaltered state. Within the deeper Made Ground the overburden pressures of >60 KPa have acted as surcharge pressures for the past 30+ years and as such long-term total and differential settlement is considered to have ceased. Consideration must also be given to potential changes in the groundwater regime within deep filled quarry.
	subsequent replacement of all materials incorporating mechanical stabilisation features (Triaxial Geo-Grid with high tensile strength) which would form a stiffened soil platform on which a raft foundation could be constructed. The stiffened soil platform would be designed to ensure that materials are compacted to an end product specification that would ensure materials are compacted and that the density of the re-engineered material exceeds 95% of the optimum compaction potential simulated in a laboratory environment using a 2.5 kg remoulded sample.
	The viability of a VSC solution is inhibited due to the depth of Made Ground encountered on site exceeding 8.00 m along with the proximity of an intermediate pressure gas main bisecting the site and the Thirlmere Aqueduct along the northern boundary of the site.
	The proctor compaction tests completed on the underlying Made Ground deposits have indicated that the majority of materials analysed are wet of the optimum. It should be noted that if cohesive materials are excavated for use in a cut/fill operation careful consideration should be taken in the stabilisation of this material. Engineering of this type of material will need to be completed during dry weather periods only.
	Foundation depths should take account of the presence of existing and proposed trees with foundations deepened locally, to mitigate the potential for volumetric instability attributed to fluctuations in moisture content, in accordance with the requirements of NHBC standards.
	It is recommended that at working drawing stage a foundation schedule is prepared for the development taking account of the physical change of Made Ground clay soils and the current / proposed locations of trees.
	Consideration must also be given to the fact that the site has been classified as moderate to high risk from possible Unexploded Ordnance (UXO) resulting from the Second World War. The site will therefore require clearance prior to the installation of any foundation solution.

Building Floor Slabs	Ground-bearing floor slabs are unlikely to be viable given the anticipated depths or reworked Made Ground > 600 mm and shallow cohesive soils.
Heave Precautions	Given that the underlying clay is of low volume change potential, heave precautions will not be required to the internal face of a foundation less than 1.5 m in depth. Heave precautions will be required to the underside of floor slabs (where there is no 200 mm void) and pile ground beams are required within the modelled influencing distance of trees.
Soakaway Drainage	In-situ variable (falling) head permeability tests were undertaken within the monitoring well installations located in two probeholes (CP101 and CP102). Both of the installations were noted to be dry prior to the test being undertaken, therefore the tests were undertaken in the unsaturated zone. Infiltration tests in both CP101 and CP102 were completed in the underlying Made Ground where a soil infiltration rate of 1.32E-05 m/s and 1.56E-05 m/s have been calculated respectively. The site is underlain by Made Ground impacted by low-level inorganic and hydrocarbon compounds. It is therefore considered that soakaway drainage will not be suitable for the proposed development.
Sulphate Assessment	Following a process of remediation and enabling works, concrete classification will be DS-1 AC-1s.
CBR Design %	Made Ground can be re-engineered to ensure a CBR >5%.Granular soils can be re-engineered to ensure 3-5% within the sub-grade during favourable climatic conditions.Cohesive soils will provide a CBR in the order of 2-4% during drier climatic periods. However, if water is allowed to shed onto the formation, the CBR will reduce to <2% which will require specialist engineering of the subgrade.
Cut/Fill	Development levels unknown at this time, however some cut fill may be required.
Civil Engineering Excavations	The E3P Intrusive Ground Investigation has not identified the presence of weathered/competent bedrock at a shallow depth or running sands. Shallow groundwater has been encountered. Minor water ingress will require localised dewatering/sump pumping during the construction of site drainage infrastructure.
Waste Characterisation	Any material that is to be disposed off-site should undergo assessment using Technical Guidance WM3: <i>Waste Classification – Guidance on the classification and assessment of waste</i> .

RECOMMENDATIONS

Based on the findings of the geoenvironmental site assessment, the following additional works are recommended to be completed in due course:

- Further controlled waters risk assessment using the mBAT tool for heavy metals following the completion of supplementary groundwater sampling;
- Further site investigation will be required in the west of the site where access was restricted due to the presence of overgrown vegetation, a gas main and semi-improved neutral grassland;
- © Continuous ground gas monitoring in the vicinity of WS102 and WS103 in the south of the site;
- Plot-specific foundation schedule (upon receipt of the final development levels and proposed development layout);
- Materials management plan;
- Geotechnical earthworks strategy (infrastructure);
- Remediation and enabling works strategy; and
- Full three-dimensional earthworks cut/fill model.

Table of Contents

E)	EXECUTIVE SUMMARY				
1.		ODUCTION			
	1.1.	Background			
	1.2. 1.3.	Proposed Development Objectives			
	1.3. 1.4.				
	1.4. 1.5.	Limitations Confidentiality			
	1.5.		13		
2.	CRO	UND INVESTIGATION	4.4		
	2.1.	Phase I Desk Study Summary			
	2.1.	General Overview			
	2.2.	In-Situ Standard Penetration Testing (SPT)			
		In-Situ California Bearing Ratio (CBR)			
	2.5.	Permeability Tests			
	2.6.	Laboratory Analysis			
	2.0.		10		
3.	GRO	UND AND GROUNDWATER CONDITIONS	20		
	3.1.	Summary of Ground Conditions			
	3.2.	Made Ground			
	3.3.	Drift Deposits			
	3.4.	Solid Geology			
	3.5.	Groundwater			
	3.6.	Visual and Olfactory Evidence of Contamination			
	3.7.	Side Stability and Ease of Excavation			
	3.8.	Soil Consistency	23		
	3.9.	Soil Infiltration	28		
	3.10.	Particle Size Distribution	28		
	3.11.	Soil Dry Density / Moisture Content Relationship	28		
	3.12.	Soil Plasticity	29		
	3.13.	California Bearing Ratio			
	3.14.	pH and Sulphate			
	3.15.	Ground Gas			
	3.16.	Investigation Rationale			
	3.17.	Monitoring Methodology	32		
4.		I QUALITATIVE CONTAMINATED LAND RISK ASSESSMENT			
	4.1.	Human Health Risk Assessment			
	4.2.	Controlled Waters Risk Assessment			
	4.3.	Ground Gas			
	4.3.1				
	4.3.2				
	4.3.3				
	4.3.4 4.3.5				
	4.3.5	. Gas Assessment Residential Building Gas Risk Mitigation			
	4.4. 4.5.	Potable water supply			
	4.5.	Conceptual Site Model			
	4.0.		59		
5.	GEO	TECHNICAL ASSESSMENT	66		
у.	5.1.	Proposed Development			
	5.2.	Summary of Ground Conditions			
	5.3.	Site Preparation			
	5.4.	Foundation Conditions and Assessment of Potential Bearing Capacities			
	5.5.	Ground Floor Slabs			
	5.6.	Heave Precautions			
	5.7.	Highways Construction			
			-		

	5.8. 5.9. 5.10. 5.11. 5.12.	Drainage	70 71 72
	Contam	ICLUSIONS AND RECOMMENDATIONS 7 ninated Land Assessment 7 hnical Assessment 7	73
AF	PENDI	X I LIMITATION	76
AF	PENDI	X II GLOSSARY	78
AF	PENDI	X III DRAWINGS	31
AF	PENDI	X IV PHOTOGRAPHS	32
AF	PENDI	X V E3P EXPLORATORY HOLE LOGS	37
AF	PENDI	X VI CHEMICAL TESTING RESULTS	38
AF	PENDI	X VII ORIGIN OF TIER I GENERIC ASSESSMENT CRITERIA	39
AF	PENDI	X VIII DYNAMIC CONE PENETROMETER TEST CERTIFICATES	91
AF	PENDI	X IX FALLING HEAD PERMEABILITY TEST CERTIFICATES	32
AF	PENDI	X X GEOTECHNICAL TESTING	93

DRAWING LIST

- 13-533-001 Site Location Plan
- 13-533-002 Site Features Plan
- 13-533-003 Historical Features Plan
- 13-533-004 Exploratory Hole Location Plan
- 13-533-005 Exploratory Hole Location Plan with Historical Features
- 13-533-006 Development Constraints Plan
- 13-533-007 Depth to Made Ground
- 13-533-008 Depth to Founding Strata Plan
- 13-533-009 Conceptual Site Model
- 13-533-010 Contamination Distribution Plan Soils
- 13-533-011 Contamination Distribution Plan Groundwater

1. INTRODUCTION

1.1. BACKGROUND

E3P Ltd has been commissioned by Manchester Metropolitan University to undertake a Phase II Geoenvironmental Site Assessment at land north of Ryebank Road in Chorlton.

This report is required to determine potential contaminated land liabilities, remediation requirements and geotechnical engineering works that will be required as part of the proposed development for a proposed low-rise residential development.

The scope of work includes the following elements:

- Detailed review of historic information;
- Detailed desk study;
- Design of suitable intrusive ground investigation;
- Window sample probeholes with, and construction of, environmental monitoring installations;
- Deep cable percussive boreholes with monitoring installations;
- Mechanically excavated trial pits;
- Oynamic Cone Penetrometer Testing;
- In-situ geotechnical testing;
- Chemical and geotechnical laboratory analysis;
- Groundwater monitoring and sampling;
- Ground gas monitoring;
- Contamination risk assessment and conceptual site model;
- Geotechnical assessment and interpretation; and
- Factual and interpretive reporting.

1.2. PROPOSED DEVELOPMENT

E3P understands that Manchester Metropolitan University (MMU) are considering the proposed divestment of their asset at Ryebank Fields, Chorlton which is deemed to be surplus to requirement. As part of the divestment a Development Framework was approved by Manchester City Council in June 2019 that promotes a high-quality residential development across the site with associated gardens, estate roads and infrastructure. The Development Framework contains the proposed development layout for the site.

1.3. OBJECTIVES

The objectives of the geoenvironmental assessment are as follows:

- Output the second se
- Assess the implications of any potential environmental risks, liabilities and development constraints associated with the site in relation to the future use of the site and in relation to offsite receptors.
- Assess the geotechnical information and provide preliminary recommendations in relation to foundations, pavement construction and floor slabs.
- Provide recommendations regarding future works required.

1.4. LIMITATIONS

The limitations of this report are presented in Appendix I.

1.5. CONFIDENTIALITY

E3P has prepared this report solely for the use of the client and those parties with whom a warranty agreement has been executed, or with whom an assignment has been agreed. Should any third party wish to use or rely upon the contents of the report, written approval must be sought from E3P; a charge may be levied against such approval.

2. GROUND INVESTIGATION

2.1. PHASE I DESK STUDY SUMMARY

E3P have completed a Phase I Geoenvironemental Site Assessment (Report Ref: 13-533-R1-2, dated March 2020), the pertinent points of which are summarised below:

Current and Historic Features

Historical mapping suggests that the site was undeveloped agricultural land with Longford Brook traversing the site west to east. In the late 1800's a pond was present in the centre of the site with a small structure in the south-western corner. In the early 1900's residential properties were present in the south-east of the site; furthermore, a brick works is present along the eastern boundary of the site. Mapping from 1930-1938 identifies a Clay Pit and two ponds in the north of the site, with embankments present across the entire site likely to be indicative of areas of excavation. Mapping from 1950 show all previous features to no longer be present, with a drain traversing the site west to east. An unspecified building was present in the west of the site from mapping dated 1971-1981 and was demolished at some point between 2003 and 2005.

Geology and Ground Conditions

The drift geology comprises Glaciofluvial Sheet Deposits (North West) consisting SAND and GRAVEL and Glacial till comprising CLAY, SAND and GRAVELS across the majority of the site. The bedrock is comprises Wilmslow SANDSTONE Formation.

Site Sensitivity

The site has been determined to be located within a high sensitivity setting.

There are residential houses immediately north, south and east of the site and St. Johns R.C. Primary School is located immediately east of the site.

There are three groundwater abstraction points situated within 1 km of the site which are operated by Trafford Metal Finishers Manchester Ltd utilised as process water. The three abstraction licenses relate to these boreholes. The site is also underlain by a Principal aquifer.

The Nico ditch intersects the centre of the site and is deemed to be of great historic and archaeological importance. The ditch will therefore require assessment by an archaeologist and protected during any future development on-site.

Human Health

Based on the information available to review, it is considered that there will be a moderate risk to human health. However, as the site has been subject to infilling and significant historical development, the site is thought to be underlain by significant depths of Made Ground. Made Ground may be potentially impacted with TPHs, heavy metals, PAHs and asbestos. Should these determinants be present it is likely that they can be mitigated through the placement of a suitably designed clean cover system to all gardens and landscaped areas. Should any volatile determinants be identified these are likely to require removal during remediation and enabling works in order to determine their retention on site and to not pose a risk to future end users.

Controlled Waters

The site is underlain by a Principal aquifer and the Nico Ditch (referred to as a drain) is intersecting the centre of the site however it is noted to be dry. A drain is located 156 m west of the site. Longford book (culverted) is located circa 210 m west of the site. There are also three groundwater abstraction points situated within 1 km of the site which may create a potential linkage. Made Ground across the site resulting from historic development and infilling may be a potential source of metals, hydrocarbon compounds, chlorinated solvents and PAHs.

The site is anticipated to be underlain by low permeability cohesive drift deposits which will afford protection to the underlying aquifer. The closest surface water feature is not considered to be within influencing distance of the site.

A detailed controlled water risk assessment will be required in order to confirm the absence of risk to controlled waters. It is likely that the Environment Agency will be consulted as part of any future planning application for a residential development.

Ground Gas

Significant depths of Made Ground, associated with former infilling and historical development of the site, are anticipated to be underlying the subject site which may be a potential source of ground gas such as methane and carbon dioxide. Hazardous ground gases may pose a low-level risk to construction workers and residential end users. Carbon dioxide and methane can migrate to indoor air spaces through service ducts and collect in deep excavations and have associated asphyxiation and explosive risks, respectively.

If a gas risk is identified, then mitigation may be required through the design and installation of appropriate gas protection measures as specified within BS8485 (2015)+A1(2019) Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings.

Geotechnical Risk

Extensive depths of Made Ground is anticipated beneath the site associated with the infilling of former clay pits and more recently, the demolition of former buildings. If volatile determinants are identified within the Made Ground they will require removal from site. Likely elevated levels of heavy metals and PAHs can be mitigated with the installation of a clean cover system within gardens and landscaped areas.

Made Ground present beneath the site is likely to be loosely compacted and possibly prone to collapse. Footings will require deepening in accordance with NHBC guidance 2016 Chapter 4.2 if the development incorporates any existing and proposed trees within any cohesive drift deposits;

The underlying superficial geology will likely comprise a cohesive soil matrix and, as such, is not likely to offer the required degree of permeability to make soak-away drainage viable in this instance;

The site has been determined to be at moderate risk of having compressible soils and this will require further investigation during a ground investigation.

Civil and Structural

The site is generally topographically level with a slight slope from south to north. To construct a low-rise residential development, limited earthworks will be required to create a level developable platform

Given the previously developed nature of the south of the site and that the site has been subject to extensive infilling, it is likely there will be Made Ground fill deposits and underground obstructions. All relic foundations and underground obstructions will require grubbing out in their entirety, prior to the construction of the proposed development.

A full utility survey has not been completed however a review of online service has identified an intermediate pressure gas main to dissect the site north to south, with a low pressure gas main present in the south-west of the site.

BT and electricity service infrastructure is present in the south-western corner of the site.

United Utilities have noted the presence of a surface water sewer in the south of the site with an overflow sewer within the north of the site. Adjacent to the northern boundary is the Thirlmere Aqueduct, an LDTM Treated Water Trunk Main.

2.2. GENERAL OVERVIEW

A ground investigation has been designed based on the findings of the desk study, with exploratory holes advanced to target specific potential contaminant sources summarised in Table 2.1. The investigation has also been used to collect geotechnical information to assist in the design and construction of the proposed development.

Exploratory fieldwork was completed between 3rd and 5th December 2019. The works are summarised in Table 2.1.

POTENTIAL SOURCE/RATIONALE	LOCATION HOLE	TYPE	MAXIMUM DEPTH (m bgl)	MONITORING WELLS RESPONSE ZONE (m bgl)
General ground	TP108		2.20	-
conditions including the presence / nature of	TP120	Mechanically Excavated Trial Pit	2.20	_
obstructions and depth of	TP121		2.20	_
Made Ground in the vicinity of former ponds in the north of the site.	WS108	Window Sample Probehole	4.45	0.50–3.00
General ground	TP107		2.40	_
conditions including the presence / nature of	TP117	Mechanically Excavated Trial Pit	1.60	_
obstructions and depth of	TP127		2.00	_
Made Ground in the vicinity of former pond in	WS103	Window Sample	5.45	0.50–2.00
the south of the site.	WS104	Probehole	5.45	0.50–2.50
General ground conditions including the presence / nature of obstructions and depth of	TP104	Mechanically	2.10	_
Made Ground in the vicinity of former houses in the south of the site.	TP128	Excavated Trial Pit	3.20	_
General ground	TP129	Mechanically	1.90	_
conditions including the presence / nature of	TP130	Excavated Trial Pit	2.20	_
obstructions and depth of Made Ground in the vicinity of hardstanding in the south of the site.	WS112	Window Sample Probehole	3.45	0.50–2.00

TABLE 2.1 SUMMARY OF FIELDWORK

POTENTIAL SOURCE/RATIONALE	LOCATION HOLE	TYPE	MAXIMUM DEPTH (m bgl)	MONITORING WELLS RESPONSE ZONE (m bgl)
	TP109		2.20	_
	TP110	-	2.20	_
	TP111		1.80	_
	TP112		1.90	_
	TP113		2.00	_
	TP114	Mechanically	2.30	_
	TP115	Excavated Trial Pit	2.20	_
General ground conditions including the	TP118		1.90	-
presence / nature of	TP119		1.80	_
obstructions and depth of Made Ground in the	TP122		3.00	_
vicinity of former clay pit	TP123		2.20	_
in the north of the site.	TP124		2.20	_
	WS105		4.45	0.50–2.00
	WS106		3.00	0.50-2.00
	WS107	Window Sample Probehole	4.45	0.50–3.00
	WS109		4.45	0.50–2.50
	WS110		3.00	0.50–2.00
	WS111		4.00	0.50-3.00
	TP101		2.40	_
	TP102		2.30	_
General ground conditions including the	TP105	Mechanically	2.20	_
presence / nature of	TP106	Excavated Trial Pit	1.70	_
obstructions and depth of Made Ground in the	TP116		2.40	_
vicinity of former clay pit in the south of the site.	TP126		2.30	_
in the south of the site.	WS102	Window Sample Probehole	5.45	0.50–4.00
General ground conditions including the presence / nature of obstructions and depth of Made Ground in the vicinity of Longford Brook	TP118	Mechanically Excavated Trial Pit	1.90	_

Ryebank Road Phase II Geoenvironmental Site Assessment March 2020

POTENTIAL SOURCE/RATIONALE			MAXIMUM DEPTH	MONITORING WELLS RESPONSE ZONE (m bgl)
General ground conditions including the presence / nature of obstructions and depth of Made Ground in the vicinity of Unspecified Building in the south of the site.	TP103	Mechanically Excavated Trial Pit	2.40	_
General ground conditions including the	WS101	Window Sample Probehole	5.45	0.50–3.00
presence / nature of obstructions and depth of Made Ground	TP125	Mechanically Excavated Trial Pit	2.10	_
Investigation of deep ground conditions to	CP101	Cable Percussion Borehole	14.90	10.50–12.50
identify suitable founding strata.	CP102	Cable Percussion Borehole	14.45	8.00–10.00

Access was restricted in the west of the site due to the presence of overgrown vegetation, a gas main and semi-improved neutral grassland.

Mechanically excavated trial pits were advanced to investigate ground conditions and to retrieve environmental samples, spatially distributed to offer the maximum site coverage whilst also being advanced to target specific contaminant sources.

Window sample probeholes were advanced to undertaken in-situ detailed geotechnical testing, obtain environmental samples and install groundwater and ground gas monitoring wells.

Cable Percussion boreholes were advanced to facilitate the investigation of deeper soil horizons (in excess of 5.00 m bgl) with extensive in-situ geotechnical testing to determine the relative densities of granular soils and undrained strengths of clays.

Dynamic Cone Penetrometer tests will be completed where possible to assess the in-situ CBR value of the underlying strata to a depth of 1.00 m bgl.

The sampling locations are illustrated in Drawing 13-533-004 (Appendix III). The ground conditions encountered are indicated on the logs, which are provided in Appendix V.

Return visits were made to monitor installations for groundwater level and gas concentrations. In addition, selected wells were purged and samples of groundwater recovered for chemical analysis

2.3. IN-SITU STANDARD PENETRATION TESTING (SPT)

In-situ geotechnical testing was conducted using the standard penetration test (SPT) and, where the ground is granular, a 60° cone (SPT(C)) was used instead of the sampling tube. The results are shown in the probehole logs in Appendix V and presented in Table 3.6 and discussed in Section 5.

2.4. IN-SITU CALIFORNIA BEARING RATIO (CBR)

In-situ CBR tests were undertaken at selected locations using a TRL probe. Tests were undertaken at depths of between 0.3 m and 1 m below ground level in order to intersect the likely pavement sub-formation level. The results are presented in Table 3.10 and test certificates are included within Appendix VIII.

2.5. PERMEABILITY TESTS

Two falling head permeability tests were undertaken within environmental monitoring wells (CP101 and CP102) in order to assess the likely permeability of the underlying strata to determine the potential suitability for soakaway drainage within the proposed development. The results are presented in Table 3.8 and the test certificates are included within Appendix IX.

2.6. LABORATORY ANALYSIS

Selected soil samples were submitted for a range of chemical analysis comprising:

- Ø Metals.
- pH, total sulphate, water-soluble sulphate (2:1 extract).
- Sulphide.
- Ovanide.
- Phenols.
- Total and speciated polycyclic aromatic hydrocarbons (PAHs).
- Semi Volatile Organic Compounds (SVOC).
- Volatile Organic Compounds (VOC).
- Solution and quantification and quantification.
- Speciated and banded total petroleum hydrocarbon (TPH).

I2 Analytical undertook the analytical work and the testing results are included in Appendix VI and discussed in Section 4.

Selected samples were submitted to PSL Laboratory where the following geotechnical tests were undertaken:

- O Atterberg limits determinations;
- Moisture Content;
- Dry density/moisture content relationship (2.5kg); and
- Particle Size Distribution Test

Laboratory analysis sheets are included in Appendix X and are summarised in Section 9.

3. GROUND AND GROUNDWATER CONDITIONS

3.1. SUMMARY OF GROUND CONDITIONS

The ground investigation generally confirms the published geology and identifies the strata set out in Table 3.1.

ABLE 3.1	DEPTH TO STRATUM (mbgl)								
HOLE	MADE GROUND TOPSOIL	MADE GROUND	CLAY						
TP101	0.00–0.30	0.30–2.40	-						
TP102	0.00–0.20	0.20–2.30	-						
TP103	0.00-0.30	0.30–2.40	-						
TP104	0.00-0.20	0.20–2.10	-						
TP105	0.00-0.30	0.30–2.20	-						
TP106	0.00-0.20	0.20–1.70	-						
TP107	0.00-0.30	0.30–2.40	-						
TP108	0.00-0.20	0.20–2.20	-						
TP109	0.00-0.30	0.30–2.20	-						
TP110	0.00-0.30	0.30–2.20	-						
TP111	0.00-0.30	0.30–1.80	-						
TP112	0.00-0.10	0.10–1.90	-						
TP113	0.00–0.20	0.20–2.00	-						
TP114	0.00-0.30	0.30–2.30	-						
TP115	0.00-0.30	0.30–2.20	-						
TP116	0.00–0.20	0.20–2.40	-						
TP117	0.00-0.20	0.20–1.60	-						
TP118	0.00-0.30	0.30–1.90	-						
TP119	0.00-0.30	0.30–1.80	-						
TP120	0.00-0.30	0.30–2.20	-						
TP121	0.00-0.30	0.30–2.20	-						
TP122	0.00–0.20	0.20-3.00	-						
TP123	0.00-0.20	0.20–2.20	-						
TP124	0.00-0.20	0.20–2.20	-						
TP125	0.00-0.30	0.30–2.10	-						
TP126	0.00-0.30	0.30–2.30	-						
TP127	0.00–0.20	0.20–2.00	-						
TP128	0.00-0.30	0.30–3.20	-						
TP129	-	0.00-1.90	-						
TP130	-	0.00-2.20	-						
WS101	0.00-0.30	0.30–5.45	-						
WS102	0.00-0.20	0.20-5.45	-						
WS103	0.00–0.20	0.20–5.45	-						
WS104	0.00–0.10	0.10–5.45	-						
WS105	0.00–0.20	0.20–4.00	-						
WS106	0.00–0.10	0.10–3.00	-						
WS107	0.00-0.30	0.30-4.45	-						
WS108	0.00–0.20	0.20-4.45	-						
WS109	0.00–0.20	0.20-4.45	-						
WS110	0.00–0.20	0.20–3.00	-						
WS111	0.00-0.20	0.20-4.00	-						

TABLE 3.1SUMMARY OF STRATA

	DEPTH TO STRATUM (mbgl)							
HOLE	MADE GROUND TOPSOIL	MADE GROUND	CLAY					
WS112	-	0.00-3.45	-					
CP101	0.00-0.20	0.20-12.70	12.70-14.90					
CP102	0.00-0.20	0.20–10.20	10.20-14.16					

3.2. MADE GROUND

Made Ground deposits were encountered within all exploratory hole locations to a maximum depth of 12.70 m bgl in CP101. The full depth of Made Ground was only proven within two exploratory hole locations CP101 and CP102.

The majority of exploratory hole locations were surfaced by a reworked topsoil to depths of between 0.10 m and 0.30 m bgl comprising a brown slightly clayey slightly sandy gravel with occasional cobbles and frequent rootlets, with gravel of sandstone, mudstone, concrete and brick with cobbles of concrete and brick.

TP129, TP130 and WS112 located in the area of hardstanding in the south of the site, were all overlain by asphalt to depths of between 0.10 m and 0.20 mbgl.

Underlying the reworked topsoil and asphalt, the deeper underlying Made Ground was largely granular, comprising a sandy ashy gravel which was encountered to depths of between 1.60 m and 12.70 mbgl. Made Ground consisted black sandy gravel (ashy) with occasional cobbles where gravel was of asphalt, ash, concrete, brick, plastic, and on occasion metal and glass. Cobbles comprised concrete and brick.

Isolated areas of reworked clay were identified in TP102, WS102, WS103, WS108 and WS112, encountered at depths of between 0.20-2.50 m bgl. to a maximum depth of 3.45 m bgl. and comprised a firm to stiff brown gravelly clay, with gravel of brick and concrete.

White ash in the form of a grey blue clayey sand was encountered in pockets throughout the granular Made Ground in TP111, TP113, TP115, TP120, TP129, to depths of between 1.20 m bgl and 2.20 m bgl. The White ash was also encountered as bands in TP103 between 2.10m and 2.40 m bgl, WS105 between 3.60 m and 4.00 m bgl and WS111 between 2.00 m and 2.80 m bgl.

3.3. DRIFT DEPOSITS

Drift deposits were only encountered within CP101 at 12.70 m and 14.95 m bgl and within CP102 at 10.20 m and 14.95 m bgl comprising a very stiff high strength sandy CLAY with bands of fine to medium SAND.

3.4. SOLID GEOLOGY

The solid bedrock geology was not encountered within any exploratory hole locations and was not located within any BGS boreholes in close proximity to the site.

3.5. **GROUNDWATER**

Groundwater strikes were encountered as strikes and seepages. The depth of the strikes are shown on the exploratory hole records in Appendix V and are summarised in Table 3.2.

TABLE 3.2 SUMMARY GROUNDWATER STRIKES

LOCATION	DEPTH TO STRIKE (m)	NOTES
TP101	1.90	Strike – rapid ingress
TP102	2.10	Strike – rapid ingress
TP103	2.10	Strike – rapid ingress
TP104	2.10	Strike – rapid ingress
TP105	2.20	Strike – rapid ingress
TP106	1.60	Strike – rapid ingress
TP107	2.30	Strike – rapid ingress
TP108	2.20	Strike – rapid ingress
TP109	2.00	Strike – rapid ingress
TP110	2.10	Strike – rapid ingress
TP113	1.80	Strike – rapid ingress
TP114	2.20	Strike – rapid ingress
TP115	2.10	Strike – rapid ingress
TP116	2.00	Strike – rapid ingress
TP117	1.40	Strike – rapid ingress
TP120	2.10	Strike – rapid ingress
TP122	2.90	Strike – rapid ingress
TP123	2.00	Strike – rapid ingress
TP124	2.10	Strike – rapid ingress
TP125	2.10	Strike – rapid ingress
TP126	2.20	Strike – rapid ingress
TP127	1.70	Strike – rapid ingress
TP129	1.90	Strike – rapid ingress
TP130	2.00	Strike – rapid ingress
WS101	4.30	Strike – slow ingress
WS102	4.00	Strike – slow ingress
WS103	1.20	Strike – slow ingress
WS104	1.20	Strike – slow ingress
WS107	3.00	Strike – slow ingress
WS111	1.20	Strike – slow ingress
CP101	2.00	Strike – rapid ingress
CP102	2.30	Strike – rapid ingress

Monitoring was undertaken using an electronic dip meter and interface probe to record the depth to groundwater and the thickness of any free phase hydrocarbon product, however no hydrocarbon product was present.

3.6. VISUAL AND OLFACTORY EVIDENCE OF CONTAMINATION

Visual and olfactory evidence of potential contamination has been identified during the site investigation and these are summarised in Table 3.3.

TABLE 3.3 SUIVIIVIAN	I VISUAL AND C		
LOCATION	DEPTH (m)	STRATUM	NOTES
TP101	0.30–2.40	Made Ground	Slight hydrocarbon odour
TP116	1.50-2.40	Made Ground	Strong hydrocarbon odour
TP119	1.80	Made Ground	Asbestos sheeting
TP120	2.10	Made Ground	Strong hydrocarbon odour
TP125	0.30–2.10	Made Ground	Slight hydrocarbon odour
TP127	1.80	Made Ground	Hydrocarbon odour
WS101	1.20–3.20	Made Ground	Strong hydrocarbon odour
WS102	3.10-4.00	Made Ground	Strong hydrocarbon odour
WS104	3.10-4.00	Made Ground	Strong hydrocarbon odour

 TABLE 3.3
 SUMMARY VISUAL AND OLFACTORY EVIDENCE OF CONTAMINATION

3.7. SIDE STABILITY AND EASE OF EXCAVATION

The majority of excavations were prematurely terminated due to collapse or rapid groundwater ingress flooding the excavation.

If local pumping of groundwater is required during the advancement of excavations for the proposed foundations then consideration should be given to the potential for dewatering gravels in the surrounding areas that may cause structural damage to building substructures in close proximity to the site.

Due to the depth and variability of the Made Ground and likelihood of trench collapse, it is considered that all excavations are supported or battered back in accordance with guidance contained in CIRIA R97.

The presence of brick and concrete cobbles within the Made Ground deposits meant that in certain places, excavation was slow throughout the Made Ground. The natural strata was not exposed within any excavations.

3.8. SOIL CONSISTENCY

Undrained shear strength values were measured using standard penetration tests. Results of the tests are presented in Table 3.4, which indicate the natural clay soils to vary between stiff and very stiff. Strength test data is generally consistent with the field descriptions of the aforementioned soils.

Phase II Geoenvironmental Site Assessment March 2020

TABLE 3.4 STANDARD/CONE PENETRATION TEST RESULTS

BOREHOLES	DEPTH (m bgl)	MATERIAL FIELD DESCRIPTION	CPT/SPT "N" VALUE	CORRECTED "N" VALUE (N1)60	TERZAGHI & PECK RELATIVE DENSITY (SANDS)	EUROCODE SOIL STRENGTH	CONSISTENCY (BS 5930)	TERZAGHI & PECK APPROXIMATE UNDRAINED SHEAR STRENGTH (kN/m ²)
WS101	1	MADE GROUND	12	12.10	Medium Dense	N/A	N/A	N/A
WS101	2	MADE GROUND	5	4.57	Loose	N/A	N/A	N/A
WS101	3	MADE GROUND	2	1.74	Very Loose	N/A	N/A	N/A
WS101	4	MADE GROUND	18	15.21	Medium Dense	N/A	N/A	N/A
WS101	5	MADE GROUND	16	13.27	Medium Dense	N/A	N/A	N/A
WS102	1	MADE GROUND	4	4.03	Loose	N/A	N/A	N/A
WS102	2	MADE GROUND	1	0.91	Very Loose	N/A	N/A	N/A
WS102	3	MADE GROUND	12	10.44	Medium Dense	N/A	N/A	N/A
WS102	4	MADE GROUND	4	3.38	Very Loose	N/A	N/A	N/A
WS102	5	MADE GROUND	11	9.13	Loose	N/A	N/A	N/A
WS103	1	MADE GROUND	15	15.12	Medium Dense	N/A	N/A	N/A
WS103	2	MADE GROUND	2	1.83	Very Loose	N/A	N/A	N/A
WS103	3	MADE GROUND	11	9.57	Loose	N/A	N/A	N/A
WS103	4	MADE GROUND	12	10.14	Medium Dense	N/A	N/A	N/A
WS103	5	MADE GROUND	7	5.81	Loose	N/A	N/A	N/A
WS104	1	MADE GROUND	13	13.11	Medium Dense	N/A	N/A	N/A
WS104	2	MADE GROUND	4	3.65	Very Loose	N/A	N/A	N/A
WS104	3	MADE GROUND	21	18.26	Medium Dense	N/A	N/A	N/A
WS104	4	MADE GROUND	17	14.36	Medium Dense	N/A	N/A	N/A
WS104	5	MADE GROUND	20	16.59	Medium Dense	N/A	N/A	N/A

BOREHOLES	DEPTH (m bgl)	MATERIAL FIELD DESCRIPTION	CPT/SPT "N" VALUE	CORRECTED "N" VALUE (N1)60	TERZAGHI & PECK RELATIVE DENSITY (SANDS)	EUROCODE SOIL STRENGTH	CONSISTENCY (BS 5930)	TERZAGHI & PECK APPROXIMATE UNDRAINED SHEAR STRENGTH (kN/m ²)
WS105	1	MADE GROUND	26	26.21	Medium Dense	N/A	N/A	N/A
WS105	2	MADE GROUND	0	0.00	Very loose	N/A	N/A	N/A
WS105	3	MADE GROUND	22	19.13	Medium Dense	N/A	N/A	N/A
WS105	4	MADE GROUND	4	3.38	Very Loose	N/A	N/A	N/A
WS106	1	MADE GROUND	17	17.14	Medium Dense	N/A	N/A	N/A
WS106	2	MADE GROUND	4	3.65	Very Loose	N/A	N/A	N/A
WS106	3	MADE GROUND	50	43.48	Dense	N/A	N/A	N/A
WS107	1	MADE GROUND	20	20.16	Medium Dense	N/A	N/A	N/A
WS107	2	MADE GROUND	17	15.53	Medium Dense	N/A	N/A	N/A
WS107	3	MADE GROUND	12	10.44	Medium Dense	N/A	N/A	N/A
WS107	4	MADE GROUND	16	13.52	Medium Dense	N/A	N/A	N/A
WS108	1	MADE GROUND	23	23.19	Medium Dense	N/A	N/A	N/A
WS108	2	MADE GROUND	30	27.41	N/A	High strength	Very Stiff	137.03
WS108	3	MADE GROUND	0	0.00	Very Loose	N/A	N/A	N/A
WS109	1	MADE GROUND	16	16.13	Medium Dense	N/A	N/A	N/A
WS109	2	MADE GROUND	7	6.39	Loose	N/A	N/A	N/A
WS109	3	MADE GROUND	21	18.26	Medium Dense	N/A	N/A	N/A
WS109	4	MADE GROUND	13	10.98	Medium Dense	N/A	N/A	N/A
WS110	1	MADE GROUND	8	8.07	Loose	N/A	N/A	N/A
WS110	2	MADE GROUND	28	25.58	Medium Dense	N/A	N/A	N/A
WS110	3	MADE GROUND	50	43.48	Dense	N/A	N/A	N/A

BOREHOLES	DEPTH (m bgl)	MATERIAL FIELD DESCRIPTION	CPT/SPT "N" VALUE	CORRECTED "N" VALUE (N1)60	TERZAGHI & PECK RELATIVE DENSITY (SANDS)	EUROCODE SOIL STRENGTH	CONSISTENCY (BS 5930)	TERZAGHI & PECK APPROXIMATE UNDRAINED SHEAR STRENGTH (kN/m ²)
WS111	1	MADE GROUND	23	23.19	Medium Dense	N/A	N/A	N/A
WS111	2	MADE GROUND	27	24.67	Medium Dense	N/A	N/A	N/A
WS111	3	MADE GROUND	1	0.87	Very Loose	N/A	N/A	N/A
WS112	1	MADE GROUND	18	18.15	Medium Dense	N/A	N/A	N/A
WS112	2	MADE GROUND	12	10.96	N/A	Medium strength	Stiff	54.81
WS112	3	MADE GROUND	4	3.48	N/A	Very low strength	Soft	17.39
CP101	1	MADE GROUND	7	7.06	Loose	N/A	N/A	N/A
CP101	2	MADE GROUND	7	6.39	Loose	N/A	N/A	N/A
CP101	3	MADE GROUND	9	7.83	Loose	N/A	N/A	N/A
CP101	4	MADE GROUND	20	16.90	Medium Dense	N/A	N/A	N/A
CP101	5	MADE GROUND	8	6.64	Loose	N/A	N/A	N/A
CP101	6.5	MADE GROUND	37	30.21	Dense	N/A	N/A	N/A
CP101	8	MADE GROUND	15	12.14	Medium Dense	N/A	N/A	N/A
CP101	9.5	MADE GROUND	15	12.09	Medium Dense	N/A	N/A	N/A
CP101	11	MADE GROUND	36	27.84	Medium Dense	N/A	N/A	N/A
CP101	12.5	CLAY	20	14.61	N/A	Medium strength	Stiff	73.06
CP101	14	CLAY	50	34.64	N/A	Very high strength	Very Stiff	173.18
CP101	14.5	CLAY	50	34.05	N/A	Very high strength	Very Stiff	170.24
CP102	1	MADE GROUND	10	10.08	Medium Dense	N/A	N/A	N/A
CP102	2	MADE GROUND	14	12.79	Medium Dense	N/A	N/A	N/A
CP102	3	MADE GROUND	26	22.61	Medium Dense	N/A	N/A	N/A

BOREHOLES	DEPTH (m bgl)	MATERIAL FIELD DESCRIPTION	CPT/SPT "N" VALUE	CORRECTED "N" VALUE (N1)60	TERZAGHI & PECK RELATIVE DENSITY (SANDS)	EUROCODE SOIL STRENGTH	CONSISTENCY (BS 5930)	TERZAGHI & PECK APPROXIMATE UNDRAINED SHEAR STRENGTH (kN/m ²)
CP102	4	MADE GROUND	46	38.86	Dense	N/A	N/A	N/A
CP102	5	MADE GROUND	51	42.31	Dense	N/A	N/A	N/A
CP102	6.5	MADE GROUND	25	20.41	Medium Dense	N/A	N/A	N/A
CP102	8	MADE GROUND	23	18.62	Medium Dense	N/A	N/A	N/A
CP102	9.5	MADE GROUND	32	25.79	Medium Dense	N/A	N/A	N/A
CP102	12.5	CLAY	20	14.61	N/A	Medium strength	Stiff	73.06
CP102	14	CLAY	50	34.64	N/A	Very high strength	Very Stiff	173.18
CP102	14.5	CLAY	50	34.05	N/A	Very high strength	Very Stiff	170.24
CP102	11	CLAY	28	21.65	N/A	High strength	Very Stiff	108.27
CP102	12.5	CLAY	50	36.53	N/A	Very high strength	Very Stiff	182.65
CP102	14	CLAY	52	36.02	N/A	Very high strength	Very Stiff	180.11

3.9. SOIL INFILTRATION

In-situ variable (falling) head permeability tests were undertaken within the monitoring well installations located in two probeholes (CP101 and CP102). Both of the installations were noted to be dry prior to the test being undertaken, therefore the tests were undertaken in the unsaturated zone. Infiltration tests in both CP101 and CP102 were completed in the underlying Made Ground where a soil infiltration rate of 1.32E-05 m/s and 1.56E-05 m/s have been calculated respectively. The site is underlain by Made Ground impacted by low-level inorganic and hydrocarbon compounds. It is therefore considered that soakaway drainage will not be suitable for the proposed development.

3.10. PARTICLE SIZE DISTRIBUTION

Particle Size Distribution Tests have been undertaken on selected samples of granular materials to obtain information on the soil fractions. The results are included in Table 3.8. The full results can be found in Appendix X.

LOCATION	DEPTH		SOIL FRAC	TION (%)	
LUCATION	(m)	COBBLES	GRAVEL	SAND	SILT/CLAY
CP101	3.00-3.45	0	39	26	35
CP101	8.00-8.45	0	91	8	1
CP102	1.00-1.45	33	47	18	2
CP102	3.00-3.45	30	49	18	3
CP102	5.00-5.45	0	90	10	0
TP120	2.10	0	55	39	6
TP129	1.30	0	49	46	5

TABLE 3.6SUMMARY OF PARTICLE SIZE DISTRIBUTION

3.11. SOIL DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

Dry density / moisture content relationship analysis has been conducted on soils utilising proctor compaction tests utilising a 2.5 kg rammer. The results of the tests have been summarised in Table 3.7. The full results can be found in Appendix X.

LOCATION	LABORATORY DESCRIPTION	DEPTH (m)	INITIAL MOISTURE CONTENT (%)	OPTIMUM MOISTURE CONTENT (%)	MAX DRY DENSITY (mg/m³)
CP101	Made Ground: Dark grey very gravelly very sandy clay.	3.00– 3.45	31	17	1.67
CP101	Made Ground: Dark brown slightly sandy gravel.	8.00– 8.45	16	18	1.62
CP102	Made Ground: Dark brown sandy slightly clayey gravel with many cobbles.	1.00– 1.45	14	18	1.62
CP102	Made Ground: Dark brown sandy slightly clayey gravel with many cobbles.	3.00– 3.45	19	21	1.54

 TABLE 3.7
 SUMMARY DRY DENSITY AND MOISTURE CONTENT

LOCATION	LABORATORY DESCRIPTION	DEPTH (m)	INITIAL MOISTURE CONTENT (%)	OPTIMUM MOISTURE CONTENT (%)	MAX DRY DENSITY (mg/m³)
TP120	Made Ground: Dark brown very sandy clayey gravel.	2.10	20	18	1.55
TP129	Made Ground: Brown clayey sand and gravel.	1.30	28	15	1.59

The proctor compaction tests have indicated that the majority of materials analysed are wet of the optimum.

It should be noted that if clay materials are excavated for use in a cut/fill operation careful consideration should be taken in the stabilisation of this material. Engineering of this type of material will need to be completed during dry weather periods only.

3.12. SOIL PLASTICITY

The liquid and plastic limits of samples of natural in-situ clay are determined using the cone penetrometer method and the rolling thread test. These tests enable determination of an average plasticity index (PI) for each "type" of clay, although judgement is applied where variable results are reported.

PI can be related to shrinkability (low, medium or high) and then to minimum founding depth.

E3P typically only consider a soil to be shrinkable if the proportion finer than 63 μ m is > 35%.

PI results are compared against guidance given in the NHBC standards, Chapter 4.2 (revised January 2014), which advocates the use of modified plasticity index (I'p), defined as:

$$I'p = Ip \times (\% < 425 \ \mu m/100)$$

In other words, if PI is 30%, but the soil contains $80\% < 425 \mu$ m, then I'p = $30 \times 80/100 = 24\%$.

It should be noted that in accordance with the requirements of BS 1377, the % passing the 425 μm sieve is routinely reported by testing labs.

E3P apply engineering judgement where PI results are spread over a range of classifications. Consideration is given to the average values for each particular soil type (differentiate between residual soil and alluvium), the number of results in each class and the actual values.

The Atterberg limits determinations, summarised in Table 3.8, show the clay to be of predominantly low plasticity.

LOCATION	DEPTH (m)	NATURAL MOISTURE CONTENT (%) PLASTIC LIMIT (%)		LIQUID LIMIT (%)	PLASTICITY INDEX (%)	PASSING 425 µm SIEVE (%)	MODIFIED PLASTICITY INDEX	NHBC VOLUME CHANGE POTENTIAL
CP101	14.45-14.95	11	15	28	13	78	10.14	LOW
CP102	12.50-12.95	10	14	26	12	77	9.24	LOW
CP102	14.00-14.45	16	19	36	17	84	14.28	LOW

TABLE 3.8 SUMMARY OF PLASTICITY INDEX TEST RESULTS

The results of the Atterberg limits testing confirmed that the soils would be deemed to be Low Volume Change Potential in accordance with the classification system utilised by the LABC/NHBC industry guidance.

3.13. CALIFORNIA BEARING RATIO

The California bearing ratio (CBR) for the soils were measured using an in-situ TRL probe. The results are summarised in Table 3.9.

The result sheets are included in Appendix VIII and the locations are shown on Drawing 13-533-004. CBR results have been averaged from the blow counts across the strata tested and any abnormally high blow counts ignored as these are likely to be from larger granular material and so represent anomalies.

LOCATION	DEPTH (m)	STRATA	IN-SITU OR LAB TEST	CBR (%)
DCP101	0.21–0.32	MADE GROUND: Gravel	In-Situ	6.77
DCP102	0.36–0.44	MADE GROUND: Gravel	In-Situ	82.60
DCP103	0.18–0.27	MADE GROUND: Topsoil	In-Situ	85.28
DCP104	0.19–0.22	MADE GROUND: Topsoil / Gravel	In-Situ	173.70
DCP105	0.33–0.42	MADE GROUND: Gravel	In-Situ	53.69
DCP106	0.42-0.78	MADE GROUND: Gravel	In-Situ	12.73
DCP107	0.18–0.34	MADE GROUND: Topsoil / Gravel	In-Situ	47.62
DCP108	0.30–0.50	MADE GROUND: Gravel	In-Situ	33.53
DCP109	0.11–0.27	MADE GROUND: Topsoil / Gravel	In-Situ	25.76
DCP110	0.29–0.33	MADE GROUND: Topsoil / Gravel	In-Situ	35.40

TABLE 3.9 SUMMARY OF DCP RESULTS

It should be noted that the reported CBR results were obtained from soils in a highly undisturbed state. However, the topsoil and surface cover is removed during periods of wetter climatic condition, the formation will soften, reducing the CBR.

All locations were terminated due to the presence of obstructions within the underlying Made Ground. Obstructions within the Made Ground have caused the high CBR values calculated.

3.14. pH AND SULPHATE

Chemical analyses for pH and soluble sulphate content contained in Appendix VI (summarised in Table 3.10), shows that the soils at the site generally meet Class DS-1, Aggressive Chemical Environment for Concrete Classification (ACEC) AC-1s in accordance with BRE *Special Digest 1* (2005).

Elevated sulphate concentrations meeting Class DS-2, AC-1s were noted within the Made Ground deposits in WS102 at 3.20 m bgl.

LOCATION	DEPTH (m)	SO₄ IN 2:1 WATER/SOIL (g/l)	pH VALUE	CLASSIFICATION
TP105	0.10	0.046	9.0	DS-1/AC-1s
TP115	1.60	0.15	12.3	DS-1/AC-1s

TABLE 3.10SUMMARY OF pH AND SULPHATE DATA

LOCATION	DEPTH (m)	SO₄ IN 2:1 WATER/SOIL (g/l)	pH VALUE	CLASSIFICATION
TP116	1.50	1.50 0.11		DS-1/AC-1s
TP120	2.10	0.13	10.30	DS-1/AC-1s
WS102	3.20	0.97	9.0	DS-2/AC-1s
WS105	3.80	0.055	12.4	DS-1/AC-1s

3.15. GROUND GAS

A ground gas assessment has been completed in accordance with guidance provided within CIRIA 665 – Assessing risk posed by hazardous ground gases to buildings.

3.16. INVESTIGATION RATIONALE

The ICSM has identified that the underlying Made Ground, infilled ponds, infilled clay pits, infilled field boundaries may represent a potential source of ground gas generation. Based on the identification of these sources, E3P has determined that the site represents a low ground gas source generation potential.

Within the context of the proposed residential end use and ground gas generation potential, the gas assessment requires that 9 visits are required over 6months, with at least two sets of readings at low or falling atmospheric pressure as set out within CIRIA 665 Tables 5.5a and 5.5b.

The spacing requirements for monitoring wells are detailed within CIRIA 665 Table 4.2, which indicates that for low gas hazard sites (Made Ground with limited degradable material, organic clay of limited thickness) and a high sensitivity development, nominal well spacing should be between 25 m and 50 m.

LOCATION	GROUND GAS SOURCE	DEPTH OF MONITORING WELL (m)
WS101	Made Ground	0.50–3.00
WS102	Made Ground	0.50-4.00
WS103	Made Ground	0.50–2.00
WS104	Made Ground	0.50–2.50
WS105	Made Ground	0.50–2.00
WS106	Made Ground	0.50–2.00
WS107	Made Ground	0.50–3.00
WS108	Made Ground	0.50–3.00
WS109	Made Ground	0.50–2.50
WS110	Made Ground	0.50–2.00
WS111	Made Ground	0.50–3.00
WS112	Made Ground	0.50–2.00
CP101	Made Ground	10.50–12.50
CP102	Made Ground	8.00–10.00

TABLE 3.11 GROUND GAS MONITORING LOCATION RATIONALE

3.17. MONITORING METHODOLOGY

Concentrations of methane (CH₄), carbon dioxide (CO₂) and oxygen (O₂) were measured using an infrared gas analyser (GFM435) calibrated to a reference standard (before and after each survey) and gas flow rates were measured using an integrated flow meter.

Gas measurements were recorded for a minimum of 60 seconds at each location, at which point the maximum concentration of CH_4 and CO_2 , together with the lowest concentration of O_2 were recorded. The results of the ground gas monitoring are presented in Table 3.12.

Ryebank Road Phase II Geoenvironmental Site Assessment March 2020

WELL	DATE	CH₄ INITIAL (%V/V)	CH₄ STEADY (%V/V)	CH₄ GSV (I/hr)	CO₂ INITIAL (%V/V)	CO ₂ STEADY (%V/V)	CO₂ GSV (I/hr)	O ₂ (%V/V)	ATMOS (mb)	ATMOS. DYNAMIC	FLOW (l/hr)	RESPONSE ZONE (m bgl)	DEPTH TO BASE (m bgl)	DEPTH TO WATER (m bgl)
WS101	14/01/20	15.50	15.50	-0.2542	3.40	3.40	-0.0558	0.20	999	Falling	-1.64	0.50–3.00	2.85	1.80
W3101	05/02/20	10.50	10.50	-0.1932	3.70	3.70	-0.0681	0.20	1034	Falling	-1.84	0.50-5.00	2.80	1.98
WS102	14/01/20	26.00	26.00	0.0676	1.10	1.10	0.0029	2.20	999	Falling	0.26	0.50-4.00	3.12	0.50
W3102	05/02/20					Floo	oded					0.30-4.00		
WS103	14/01/20	63.80	63.80	1.0208	0.10	0.10	0.0016	5.80	999	Falling	1.60	0.50–2.00	1.90	1.15
W3103	05/02/20	73.80	73.80	3.1808	0.20	0.20	0.0086	3.70	1034	Falling	4.31	0.50-2.00	1.94	1.27
WS104	14/01/20					Flor	oded					0.50–2.50	N/A	
W3104	05/02/20					FIO	Jueu					0.50-2.50	IN/	A
WS105	14/01/20	0.10	0.10	0.0005	0.70	0.70	0.0036	18.40	999	Falling	0.52	0.50–2.00	2.10	2.00
W3105	05/02/20	0.10	0.10	0.0003	0.70	0.70	0.0018	19.40	1034	Falling	0.26	0.30-2.00	2.12	2.00
WS106	14/01/20	0.10	0.10	-0.0003	1.00	1.00	-0.0026	18.30	999	Falling	-0.26	0.50–2.00	0.83	Dry
W3100	05/02/20	0.10	0.10	0.0003	0.90	0.90	0.0023	18.30	1034	Falling	0.26	0.30-2.00	1.80	Dry
WS107	14/01/20	0.10	0.10	0.0001	3.80	3.80	0.0038	13.40	999	Falling	0.10	0.50–3.00	2.90	1.92
W3107	05/02/20	0.10	0.10	0.002	1.70	1.70	0.0337	16.40	1034	Falling	1.98	0.30-3.00	2.90	2.00
WS108	14/01/20	0.10	0.10	0.0005	4.50	4.50	0.0234	12.20	999	Falling	0.52	0.50–3.00	2.29	1.97
W3100	05/02/20	0.10	0.10	0.0009	3.20	3.20	0.0282	15.30	1034	Falling	0.88	0.50-5.00	2.30	2.05
WS109	14/01/20	0.10	0.10	0.0008	0.90	0.90	0.0071	18.90	999	Falling	0.79	0.50 2.50	2.35	2.10
W3109	05/02/20	0.10	0.10	0.0009	0.90	0.90	0.0077	18.70	1034	Falling	0.85	0.50–2.50	2.33	2.20
WS110	14/01/20	0.10	0.10	0.0008	2.30	2.30	0.0182	18.30	999	Falling	0.79	0.50–2.00	2.60	2.00
W3110	05/02/20	0.10	0.10	0.0003	2.20	2.20	0.0057	17.80	1034	Falling	0.26	0.30-2.00	2.60	2.13

TABLE 3.12 SUMMARY OF GROUND GAS MONITORING RESULTS

Ryebank Road Phase II Geoenvironmental Site Assessment March 2020

WELL	DATE	CH₄ INITIAL (%V/V)	CH₄ STEADY (%V/V)	CH₄ GSV (I/hr)	CO₂ INITIAL (%V/V)	CO2 STEADY (%V/V)	CO₂ GSV (I/hr)	O ₂ (%V/V)	ATMOS (mb)	ATMOS. DYNAMIC	FLOW (l/hr)	RESPONSE ZONE (m bgl)	DEPTH TO BASE (m bgl)	DEPTH TO WATER (m bgl)
WC444	14/01/20	0.10	0.10	0.0005	0.10	0.10	0.0005	20.40	999	Falling	0.52	0.50, 0.00	1.92	1.92
WS111	05/02/20	0.10	0.10	0.0003	0.40	0.40	0.0010	19.80	1034	Falling	0.26	0.50–3.00	1.97	1.95
W6440	14/01/20	0.10	0.10	0.0003	0.20	0.20	0.0005	19.50	999	Falling	0.26		1.79	Dry
WS112	05/02/20	0.10	0.10	0.0003	0.70	0.70	0.0018	19.00	1034	Falling	0.26	0.50–2.00	1.80	Dry
CD404	14/01/20	0.10	0.10	-0.0043	0.10	0.10	-0.0043	19.30	999	Falling	-4.27		12.93	1.62
CP101	05/02/20	0.10	0.10	0.0001	0.10	0.10	0.0001	19.70	1034	Falling	0.10	10.50–12.50	12.95	1.70
CD402	14/01/20	0.10	0.10	0.0005	0.40	0.40	0.0021	18.50	999	Falling	0.52	0.00 10.00	9.97	2.04
CP102	05/02/20	0.10	0.10	0.0015	0.60	0.60	0.0092	18.90	1034	Falling	1.54	8.00–10.00	10.20	2.10

4. TIER I QUALITATIVE CONTAMINATED LAND RISK ASSESSMENT

E3P has undertaken a Tier 1 qualitative risk assessment to determine if any potential contaminants within the underlying soils and groundwater pose an unacceptable level of risk to the identified receptors.

4.1. HUMAN HEALTH RISK ASSESSMENT

At Tier 1 stage, the long term (chronic) human health toxicity of the soil has been assessed by comparing the on-site concentrations of organic and inorganic compounds with reference values published in LQM/CIEH S4UL (S4UL3267).

The results of this comparison have been summarised within Table 4.1.

DETERMINANT	UNIT	GAC	Ν	MC	LOC. OF EX	PATH- WAY	ASSESSMENT
Arsenic	mg/kg	37	17	34	N/A	1	No Further Action
Cadmium	mg/kg	17	17	3.3	N/A	1	No Further Action
Chromium (VI)	mg/kg	6.1	17	<4.0	N/A	1	No Further Action
Lead	mg/kg	200	17	820 230 460 1100 220 1000 680 230	TP105 0.10 m TP127 1.80 m TP128 0.80 m WS102 3.20 m TP101 0.10 m TP119 0.10 m TP120 2.10 m TP125 2.10 m	1	Further Action
Mercury	mg/kg	1.2	17	2.8 1.4	TP116 1.50 m TP119 0.10 m 3		Further Action
Nickel	mg/kg	180	17	80	N/A	1	No Further Action
Selenium	mg/kg	250	17	3.8	N/A	1	No Further Action
Copper	mg/kg	2400	17	2600	TP128 0.80 m	1	Further Action
Zinc	mg/kg	3700	17	2500	N/A	1	No Further Action
Cyanide – Total	mg/kg	791	17	120	N/A	1	No Further Action
Phenols – Total	mg/kg	210	7	47	N/A	1	No Further Action
Asbestos	Fibres	NFD	17	1.183% 0.036% 0.014% <0.001%	WS101 1.80 m WS102 3.20 m WS112 2.30 m WS110 0.50 m	4	Further Action
Naphthalene	mg/kg	2.3	17	5.1	TP127 1.80 m	3	Further Action
Acenaphthylene	mg/kg	170	17	11	N/A	2	No Further Action
Acenaphthene	mg/kg	210	17	5.7	N/A	1	No Further Action
Fluorene	mg/kg	170	17	17	N/A	1	No Further Action
Phenanthrene	mg/kg	95	17	150	TP119 0.10	2	No Further Action
Anthracene	mg/kg	2400	17	46	N/A	2	No Further Action
Fluoranthene	mg/kg	280	17	150	N/A	2	No Further Action
Pyrene	mg/kg	620	17	130	N/A	2	No Further Action
Benzo(a)Anthracene	mg/kg	7.2	17	10 44 19 12 9.6 6.8	TP128 0.80 m TP119 0.10 m TP116 1.50 m TP127 1.80 m WS102 3.20 m TP120 0.10 m	2	Further Action

Ryebank Road Phase II Geoenvironmental Site Assessment March 2020

DETERMINANT	UNIT	GAC	N	MC	LOC. OF EX	PATH- WAY	ASSESSMENT
Chrysene	mg/kg	15	17	37 16	TP119 0.10 m TP116 1.50 m	2	Further Action
Benzo(b)Fluoranthene	mg/kg	2.6	17	3.0 2.8 11 3.0 50 3.3 14 10 8.5 6.6	TP103 1.30 m TP105 0.10 m, TP128 0.80 m TP101 0.10 m TP119 0.10 m TP125 0.10 m TP125 0.10 m TP127 1.80 m WS102 3.20 m TP120 2.10 m	2	Further Action
Benzo(k)Fluoranthene	mg/kg	77	17	15	N/A	2	No Further Action
Benzo(a)Pyrene ^{**}	mg/kg	2.2	17	2.7 2.7 8.9 2.5 45 2.8 13 9.7 7.6 5.6	TP103 1.30 m TP105 0.10 m TP128 0.80 m TP101 0.10 m TP119 0.10 m TP125 0.10 m TP125 0.10 m TP127 1.80 m WS102 3.20 m TP120 2.10 m	2	Further Action
Indeno(123-cd)Pyrene	mg/kg	27	17	30	TP119 0.10 m	2	Further Action
Dibenzo(a,h) Anthracene	mg/kg	0.24	17	0.42 0.39 1.1 0.44 7.2 0.42 2.1 1.1 1.4 1.0	TP103 1.30 m TP105 0.10 m TP128 0.80 m TP101 0.10 m TP119 0.10 m TP125 0.10 m TP125 0.10 m TP127 1.80 m WS102 3.20 m TP120 2.10 m	2	Further Action
Benzo(ghi)Perylene	mg/kg	320	17	25	N/A	2	No Further Action
TPH C5-C6 (aliphatic)*	mg/kg	42	14	<1.0	N/A	3	No Further Action
TPH C6-C8 (aliphatic)*	mg/kg	100	14	<0.1	N/A	3	No Further Action
TPH C8-C10 (aliphatic)*	mg/kg	27	14	<0.1	N/A	3	No Further Action
TPH C10-C12 (aromatic)*	mg/kg	74	13	40	N/A	3	No Further Action
TPH C12-C16 (aromatic)*	mg/kg	140	13	220	TP119 0.10 m	3	Further Action
TPH C16-C21 (aromatic)*	mg/kg	260	13	1700	TP119 0.10 m	1	Further Action
TPH C21-C35 (aromatic)*	mg/kg	1100	13	1300	TP119 0.10 m	1	Further Action
TPH C5-C7 (aromatic)	mg/kg	70	3	<0.001	N/A	1	No Further Action
TPH C7-C8 (aromatic)	mg/kg	130	3	<0.001	N/A	3	No Further Action

Page 37

Phase II Geoenvironmental Site Assessment March 2020

DETERMINANT	UNIT	GAC	Ν	MC	LOC. OF EX	PATH- WAY	ASSESSMENT
TPH C8-C10 (aromatic)	mg/kg	34	3	<0.001	N/A	3	No Further Action
TPH C10-C12 (aromatic)	mg/kg	74	3	7.9	N/A	3	No Further Action
TPH C12-C16 (aromatic)	mg/kg	140	3	200	TP116 1.50 m	3	Further Action
TPH C16-C21 (aromatic)	mg/kg	260	3	1100	TP116 1.50 m	1	Further Action
TPH C21-C35 (aromatic)	mg/kg	1100	3	910	N/A	1	No Further Action
TPH C5-C6 (aliphatic)*	mg/kg	42	3	<0.001	N/A	3	No Further Action
TPH C6-C8 (aliphatic)*	mg/kg	100	3	<0.001	N/A	3	No Further Action
TPH C8-C10 (aliphatic)*	mg/kg	27	3	<0.001	N/A	3	No Further Action
TPH C10-C12 (aromatic)*	mg/kg	74	3	13	N/A	3	No Further Action
TPH C12-C16 (aromatic)*	mg/kg	140	3	20	N/A	3	No Further Action
TPH C16-C21 (aromatic)*	mg/kg	260	3	76	N/A	1	No Further Action
TPH C21-C35 (aromatic)*	mg/kg	1100	3	450	N/A	1	No Further Action

Notes

Main exposure pathways: 1 = soil ingestion, 2 = dermal contact and ingestion, 3 = vapour inhalation (indoor), 4 = dust inhalation.

Abbreviations: GAC = general assessment criteria, n = number of samples, MC = maximum concentration; Loc of Ex = location of exceedance; NFD = no fibres detected.

Referring to Table 4.1, the results of this direct comparison indicates that the data exceeds the screening criteria for a residential end use for the following contaminants:

- Lead;
- O Mercury;
- Copper;
- Asbestos;
- Naphthalene;
- Phenanthrene;
- Benzo(a)Anthracene;
- Chrysene;
- Benzo(b)Fluoranthene;
- Benzo(a)Pyrene;
- Indeno(123-cd)Pyrene;
- Dibenzo(a,h)Anthracene;
- TPH C12-C16 (aromatic);
- TPH C16-C21 (aromatic);

TPH C21-C35 (aromatic).

Asbestos was identified in four samples out of seventeen submitted for analysis. Asbestos in the form of Chrysotile and Amosite loose fibrous debris, loose fibres, bitumen and hard / cement type material. Asbestos was identified within WS102 at 3.20 m bgl, WS112 at 2.30 m bgl, WS110 at 0.50 m bgl and WS101 a 1.80 m bgl. Asbestos piping and sheeting were visually identified in TP116 and TP119 respectively.

There have been no VOCs identified above the laboratory LOD of 1.0 μ g/kg. The SVOC 2-Methylnaphthalene was identified above the limit of detection in TP116 at 1.50 m bgl (0.5 mg/kg), TP127 (4.0 mg/kg) and WS102 (3.20 mg/kg) which was identified in the Made Ground deposits associated with the infilling of the clay pits.

The laboratory analysis confirms the assessment within the initial conceptual site model that the main constituents of concern were likely to be asbestos, PAHs, hydrocarbon compounds and heavy metals.

In relation to these exceedances, the following can be determined:

- Display="block-transform: seven as the seven and the seven as the seve
 - Soil ingestion;
 - Vapour inhalation (indoor);
 - Dust inhalation
 - Dermal contact and ingestion;
 - Consumption of homegrown vegetables; and
- Exceedances have been identified between 0.10 m and 3.20 m bgl within the Made Ground deposits associated with the infilling of former clay pits.

HUMAN HEALTH RISK ASSESSMENT AND MITIGATION

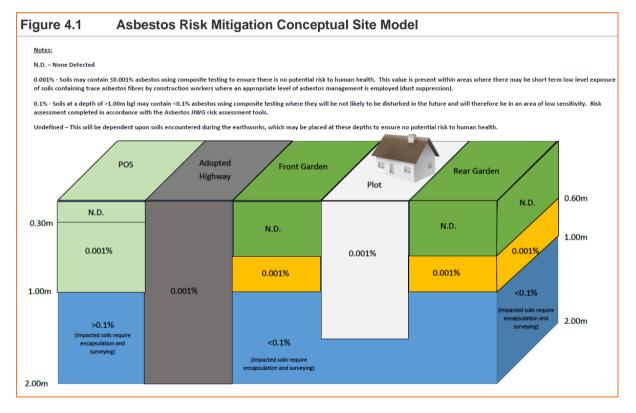
Laboratory analysis of the soils across the site has indicated the presence of elevated metals, non-volatile PAHs, and non-volatile TPH compounds within the Made Ground. Naphthalene, mercury and volatile TPH compounds were also identified in several locations.

The majority of the identified elevated concentrations have primary exposure pathways related to dermal contact and ingestion, soil ingestion and consumption of homegrown produce. These exceedances can be mitigated by the installed of a suitably designed cover system with a hard no dig layer within all proposed garden areas to be confirmed by Manchester City Council.

The specific design and installation process for the appropriate cover systems will be clearly defined within the site remediation and enabling works strategy

With regards to the elevated SVOCs, mercury, naphthalene and volatile TPHs, these present a potential volatilisation to indoor air risk. Exceedances in mercury were identified in TP116 at 1.50 m bgl and TP119 at 0.10 m bgl. Elevated naphthalene was identified in TP127 at 1.80 m bgl. Exceedances in TPH C12-16 were identified in TP119 at 0.10 m bgl and TP116 at 1.50 m bgl.

Further testing should be completed to confirm the type of mercury present and whether it presents a vapour risk. Should it be volatile a hotspot removal should be undertaken.


It is recommended that a Tier 2 vapour risk assessment is completed, as due to the homogenous nature of the fill materials it cannot be proven at this juncture if volatile compounds are present throughout the Made Ground or isolated within the locations identified thus far. Following the Tier 2 vapour risk assessment should these locations be deemed as hotspots, it will be necessary to delineate the extent of impact and ensure all material is excavated, analysed, treated for either reuse within an area of no sensitivity (post treatment) or, alternatively, removed from site.

Asbestos has been identified in four locations across the site. Asbestos quantification has been completed which has identified concentrations to be <0.001% by hand picking weight in WS110 at 0.50 mbgl. However, concentrations above <0.001% by hand picking weight have been identified in WS101 at 1.80 mbgl at 1.183%, WS102 at 3.20 mbgl at 0.036% and WS112 at 2.30 mbgl at 0.014%.

It should be assumed that asbestos fibres are present throughout the Made Ground on site, and therefore materials should be managed according to the E3P Asbestos Risk Mitigation Conceptual Site Model shown in Figure 4.1.

Where asbestos has been identified at concentrations >0.001% by hand picking weight in WS101, WS102 and WS112, a phase of hotspot removal should be undertaken with the appropriate health and safety procedures in place, where the materials can then be placed in an area in which they will no longer pose a risk to future end users.

Visual pieces of asbestos have been identified within the site investigation. These should be handpicked, suitably bagged and removed off-site by a licensed waste contractor to a suitable site.

Where a potentially unacceptable degree of risk is identified, the impacted soils should either be remediated or alternatively the prosed dwellings should be designed with appropriate mitigation measures to remove the potential pollution linkage.

There are no suitable sources of topsoil or subsoil available on the site.

4.2. CONTROLLED WATERS RISK ASSESSMENT

The site sensitivity with respect to controlled waters is summarised within Table 4.2.

RISK PROFILE	DISCUSSION	SENSITIVITY RATING
Groundwater Source Protection Zone or Drinking Water Safeguard Zone	The site is not located in a Groundwater Source Protection Zone or Drinking Water Safeguard Zone	Low
Distance to the Closest Groundwater Abstraction Point	There are three groundwater abstraction points located 593 m north of the site which are all operated by Trafford Metal Finishers Manchester Ltd and utilised for process water.	Moderate
Aquifer Classification in Superficial Drift Deposits	Secondary A and Secondary Undifferentiated aquifers underlie the subject site. The underlying superficial deposits comprise low-permeability clay deposits. However, these have only been encountered at depths of between 10.20 m - 12.70 mbgl, which may reduce the potential for mobile phase contaminants to migrate towards the bedrock aquifer.	Moderate
Aquifer Classification in Bedrock	Principal Aquifer	High
Viability for Anthropogenic Soil in Direct Contact with Aquifer (Drift or Bedrock)	Extensive depths of Made Ground with heavy metal, PAH and hydrocarbon impact has been identified to be present throughout the Made Ground.	High
Is the Site Located Within 50 m of a Surface Watercourse?	The Nico Ditch intersects the centre of the site (albeit dry) and a culverted inland river is located 156 m north west of the site. Moreover, United Utilities have indicated that the route of the Thirlmere Aqueduct runs adjacent to the northern boundary of the site. Longford book (culverted) is located circa 210 m west of the site.	High

TABLE 4.2 CONTROLLED WATERS SENSITIVITY PROFILE

SUMMARY

The ICSM developed within the context of the site setting has identified viable pollutant linkages, associated with the downward migration of potentially mobile phase-soluble contaminants towards the underlying Principal aquifer and lateral migration towards the on-site drain ditch and Thirlmere Aqueduct.

To further refine the ICSM, E3P has undertaken an initial qualitative assessment of the soil data analysis to assess the potential for a source of separate-phase or dissolved-phase contamination originating from either a defined on-site source or from impacted soils. This assessment is summarised in Table 4.3.

TABLE 4.3 QUALITATIV RESULTS	VE RISK TO CONTROLLED WATERS FROM SOIL ANALYTICAL
BTEX > 1 mg/kg	There were no exceedances in BTEX or VOC. Additionally, the soil data
Total VOC > 1 mg/kg	analysis has not identified any detectable concentrations of TPH C5 to C6 that might otherwise be indicative of VOC impact
Total SVOC > 1 mg/kg	2-Methylnaphthalene was identified above the limit of detection in TP116 at 1.50 m bgl (0.5 mg/kg), TP127 (4.0 mg/kg) and WS102 (3.20 mg/kg).
C5-C10 > 5 mg/kg	All concentrations are below the laboratory LOD
C10-C12 > 10 mg/kg	TP103 at 1.30 m bgl, WS102 at 3.20 m bgl and TP120 at 2.10 m bgl all have exceedances of C10-C12 above 10 mg/kg with a maximum concentration of 40 mg/kg in TP103 at 1.30 m bgl.
C12-C16 > 50 mg/kg	Exceedances of C12-C16 have been identified in TP116 at 1.50 m bgl and TP119 at 0.10 m bgl with a maximum concentration of 220 mg/kg.
Phenols > 2 mg/kg	All concentrations are below 2 mg/kg, with the exception of WS105 at 3.80 m which has a concentration of 47 mg/kg.
Naphthalene > 2 mg/kg	The most soluble SVOC (naphthalene) has been not identified at concentrations greater than 2 mg/kg, except for within TP127 at 1.80 mbgl) which has a concentration of 5.1 mg/kg.
Total PAH > 10 mg/kg	Concentrations of low solubility PAH compounds greater than 10mg/kg have been detected throughout the site.
PCB > 1 mg/kg	An electrical substation has been identified adjacent to the south-western boundary of the site, no analysis has been possible to date.
Heavy metals > 500 mg/kg	Heavy metals have been identified throughout the site at concentrations above 500 mg/kg, with a maximum concentration of copper identified in TP128 at 0.80 m bgl.

In due consideration of the ICSM, E3P has undertaken a Tier I controlled waters risk assessment. The Tier I assessment has included a comparison of leachate analysis and groundwater samples to environmental surface water quality (EQS) for the protection of surface water quality and drinking water standards (DWS) for the protection of the underlying aquifer.

These are presented in Table 4.4.

DETERMINAND	UNIT	EQ SCREE VALUE	NING	DWS 3,4,5	I	N	мс	LOC. OF EX	ASSESS- MENT
		AA	MAC		L	GW			
Arsenic	µg/l	50	_	10	4	4	15.4 12.8 14.0 12.0	WS110 (GW- DWS) CP101(GW- DWS) CP102(GW- DWS) TP103 2.10 m (L-DWS)	Further Assessment
Cadmium	µg/l	0.08- 0.25	0.45- 1.5	5	4	4	<0.08	_	No Further Assessment
Chromium (VI)	µg/l	3.4	-	_	4	4	20	TP106 1.50 m (L-EQS AA)	Further Assessment
Chromium (III)	µg/l	4.7	-	50	4	4	5.7	CP101 (GW- EQS AA)	Further Assessment
Copper (hardness)	µg/l	1		2000	4	4	14 110 9 13 4.3 9.1 7.5 5.0	TP103 2.10m (L-EQS AA) TP106 1.50 m (L-EQS AA) WS106 0.80m (L-EQS AA) WS111 2.70m (L-EQS AA) WS101 (GW-EQS AA) WS110 (GW-EQS AA) CP101 (GW-EQS AA) CP102 (GW-EQS AA)	Further Assessment
Total Cyanide	µg∕l	1		50	4	4	 5.2 31 160 81 7.4 1.5 5.2 	$\begin{array}{c} WS101\\ (GW-EQS\\ AA)\\ WS110\\ (GW-EQS\\ AA)\\ CP101\\ (GW-EQS\\ AA / DWS)\\ CP102\\ (GW-EQS\\ AA / DWS)\\ TP103\ 2.10\ m\\ (L-EQS\ AA)\\ WS106\ 0.80\ m\\ (L-EQS\ AA)\\ WS111\ 2.70\ m\\ (L-EQS\ AA) \end{array}$	Further Assessment

Phase II Geoenvironmental Site Assessment March 2020

DETERMINAND	UNIT	EQ: SCREE VALUE	NING	DWS 3,4,5	1	N	MC	LOC. OF EX	ASSESS- MENT
		AA	MAC		L	GW			
Lead	hð\J	1.2	14	10	4	4	16 4.4 9.5 1.5 9.8 26	$\begin{array}{c} WS101 \\ (GW - EQS / \\ DWS) \\ CP101 \\ (GW - EQS \\ AA) \\ CP102 \\ (GW - EQS \\ AA) \\ TP103 2.10 \ m \\ (L-EQS \ AA) \\ TP106 1.50 \ m \\ (L-EQS \ AA) \\ WS106 \ 0.80 \ m \\ (L-EQS / \\ DWS) \end{array}$	Further Assessment
Mercury	µg/l	_	0.07	1.0	4	4	0.18 0.17	CP101 (GW – EQS MAC) CP102 (GW – EQS MAC)	Further Assessment
Nickel	hð\J	4	34	20	4	4	 4.7 22 6.4 15 11 7.1 	WS101 (GW-EQS AA) WS110 (GW-EQS AA/ DWS) CP101 (GW-EQS AA) CP102 (GW-EQS AA) TP103 2.10 m (L-EQS AA) TP106 1.50 m (L-EQS AA)	Further Assessment
Selenium	µg/l	_	_	10	4	4	5.3	_	No Further Assessment
Zinc (hardness)	μg/l	10.9	_	_	4	4	 73 13 14 48 62 34 	TP106 1.50m (L-EQS AA) WS106 0.80m (L-EQS AA) WS101 (GW – EQS AA) WS110 (GW – EQS AA) CP101 (GW – EQS AA) CP101	Further Assessment

Phase II Geoenvironmental Site Assessment March 2020

DETERMINAND	UNIT	EQS SCREE VALUE	NING	DWS 3,4,5	r	N	MC	LOC. OF EX	ASSESS- MENT
		AA	MAC		L	GW			
								(GW – EQS AA)	
рН	6–9			4 4		11.110.712.612.6	$\begin{array}{c} {\sf CP101}\\ ({\sf GW}-\\ {\sf EQS/DWS})\\ {\sf CP102}\\ ({\sf GW}-\\ {\sf EQS/DWS})\\ {\sf TP103}\ 2.10m\\ ({\sf L}-\\ {\sf EQS/DWS})\\ {\sf WS111}\ 2.70m\\ ({\sf L}-\\ {\sf EQS/DWS})\\ \end{array}$	Further Assessment	
РАН		1					1		
Naphthalene	µg/l	2	130		4	4	16 3.4	CP101 (GW-EQS AA / DWS) CP102 (GW-EQS AA)	Further Assessment
Anthracene	µg/l	0.1	0.1		4	4	0.25	WS101 (GW – EQS AA/MAC)	Further Assessment
Benzo[b]fluoranthene	µg/l	1.7–4	0.017		4	4	<0.01	_	No Further Assessment
Benzo[k]fluoranthene	µg/l	1.7–4	0.017	10*	4	4	<0.01	_	No Further Assessment
Benzo(a)pyrene	µg/l	1.7–4	0.27		4	4	<0.01	_	No Further Assessment
Indeno(123- cd)pyrene	µg/l	0.00017*	5*		4	4	<0.01	-	No Further Assessment
Benzo(ghi)pyrene	µg/l	0.00017*	5*		4	4	<0.01	-	No Further Assessment
Fluoranthene	µg/l	0.0063	0.12		4	4	<0.01	_	No Further Assessment
Benzo(ghi)perylene	µg/l	1.7–4	8.2–3		4	4	<0.01	_	No Further Assessment
TPH-Aromatic									
TPH C5-C6 (benzene)	µg/l	10	50	1	4	4	11- 11.3 7	CP101 (Inc. Benzene – GW – EQS AA/DWS) CP102 (Inc. Benzene – GW DWS)	Further Assessment

Phase II Geoenvironmental Site Assessment March 2020

DETERMINAND	UNIT	EQ SCREE VALUE	NING	DWS 3,4,5	1	N	МС	LOC. OF EX	ASSESS- MENT
		AA	MAC		L	GW			
TPH C6-C8 (toluene)	µg/l	74	-	700	4	4	4.6	-	No Further Assessment
TPH C8-C10 (ethyl Benzene)	µg/l	20	-	300	4	4	12	_	No Further Assessment
TPH C10-C12 (xylene)	µg/l	30	_	500	4	4	63 48	CP101 (GW – EQS AA) CP102 (GW – EQS AA)	Further Assessment
ТРН С12-С16	µg/l	2	130	905	4	4	220 63	CP101 (GW – EQS AA/MAC, DWS) CP102 (GW – EQS AA)	Further Assessment
TPH C16-C35	µg/l	50#	50#	90 ⁵	4	4	79	CP101 (GW – EQS AA/MAC)	Further Assessment
TPH Aliphatic⁵									
ТРН С5-С6	µg/l	_	-	15000	4	4	<1.0	_	No Further Assessment
ТРН С6-С8	µg/l	_	-	15000	4	4	<1.0	_	No Further Assessment
TPH C8-C10	µg/l	_	-	300	4	4	<1.0	-	No Further Assessment
ТРН С10-С12	µg/l	_	-	300	4	4	<10	_	No Further Assessment
TPH C12-C16	µg/l	_	-	300	4	4	<10	_	No Further Assessment
TPH C16 – C21	µg/l	_	-	300**	4	4	<10	_	No Further Assessment
TPH C21-C35	µg/l	_	_	300**	4	4	<10	_	No Further Assessment
VOC	. 1								
Tetrachloroethylene	µg/l	0.4	-	10	-	4	<1.0	_	No Further Assessment
Trichloroethylene	µg/l	10	-	10	_	4	<0.1	-	No Further Assessment
Trichlorobenzene	µg/l	0.4	-	-	_	4	<1.0		No Further Assessment
Trichloromethane	µg/l	2.5	-	-	_	4	9.1	CP101 (GW – EQS AA)	Further Assessment

Page 46

Phase II Geoenvironmental Site Assessment March 2020

DETERMINAND	UNIT	EQS SCREE VALUE	NING	DWS 3,4,5	N		МС	LOC. OF EX	ASSESS- MENT
		AA	MAC		L	GW			
Dichloromethane	µg/l	20	_	200	_	-	-	-	No Further Assessment
Carbon Tetrachloride	µg/l	12	-	3	_	4	<1.0	_	No Further Assessment
Vinyl Chloride	µg/l	_	_	0.3	_	4	<1.0	_	No Further Assessment

Notes

Solubility < 0.01 μg/l.

AA – Annual average.

MAC – Maximum admissible concentration.

* Sum of The specified compounds are benzo[b]fluoranthene (CAS 205-99-2), benzo[k]fluoranthene (CAS 207-08-9), benzo[g,h,i]perylene (CAS 191-24-2) and indeno[1,2,3-c,d]pyrene (CAS 193-39-5).

- 1. The Water Environment (Water Framework Directive) (England and Wales) (Amendment) Regulations (2015).
- 2. <u>Directive establishing a framework for Community action in the field of water policy (Water Framework Directive).</u>
- 3. <u>Council Directive on pollution caused by certain dangerous substances discharged into the aquatic environment of the Community (Dangerous Substances Directive) List II substances.</u>
- 4. <u>Council Directive on the quality of water intended for human consumption (Drinking Water Directive).</u>
- 5. WHO Guidelines for Drinking Water Quality. Third edition (2004).

CONTROLLED WATER RISK ASSESSMENT AND MITIGATION

This comparison indicates that the data exceeds the DWS / EQS screening values for the following inorganic compounds:

- Total cyanide;
- Arsenic;
- Chromium (VI);
- Chromium (III);
- Ocpper;
- 🗘 Lead;
- O Mercury;
- Nickel;
- 🟮 Zinc;
- Naphthalene;
- Aromatic TPH C5-C6 (benzene);
- Aromatic TPH C10-C12;

- Aromatic TPH C12-C16;
- Aromatic TPH C16-C35; and,
- Trichloromethane.

HEAVY METALS

Groundwater samples from WS110, CP101 and CP102 along with a leachate sample from TP103 at 2.10 m bgl have recorded elevated concentrations of arsenic when compared against the DWS.

Elevated concentrations of chromium (VI) has been identified within a leachate sample from TP106 at 1.50 m bgl against EQS Annual Average (AA) values. A Maximum Admissible Concentration (MAC) and DWS value is not available for this determinant.

The EQS AA Chromium (III) screening value has been exceeded by a groundwater sample from CP101.

All leachate and groundwater samples have exceeded the EQS AA screening value for copper. concentrations have not exceeded the DWS screening criteria.

All groundwater samples, and all bar one leachate sample have exceeded the EQS AA screening value for total cyanide.

Lead exceeding EQS AA, EQS MAC and DWS screening values have been identified in groundwater samples from WS101 and a leachate sample from WS106 at 0.80 m bgl. Furthermore, groundwater samples from CP101 and CP102, along with leachate samples from TP103 at 2.10 m bgl and TP106 at 1.50 m bgl have exceeded the EQS AA screening value.

Mercury has been identified to be elevated against EQS MAC for groundwater samples in CP101 and CP102.

Nickel has been noted to be elevated against predominately EQS AA values in groundwater (WS101, WS110, CP101 and CP102) and leachate samples (TP103 2.10 m and TP106 1.50 m). Whilst groundwater samples from WS110 also exceeded the Nickel DWS screening value.

Zinc has been identified to be elevated against EQS AA values for leachate samples in TP106 1.50 m and WS106 0.80 m, and groundwater samples in WS101, WS110, CP102 and CP102.

The elevated concentrations of inorganic heavy metal impact are deemed to be associated with the historic Made Ground fill materials from the infilling of former clay pits on site.

It is recommended that further groundwater sampling is completed in order to retrieve DOC, Manganese and Calcium concentrations to enable the completion of a bioavailability assessment using the m-BAT tool to determine the amount of metal that is bioavailable for Copper, Zinc, Nickel, Manganese and Lead.

Elevated concentrations of arsenic, chromium (VI), nickel, total cyanide and zinc against the Tier I values have not been identified within the soil analysis on site, and therefore not considered to be a significant source on site.

pH has been noted to be elevated in groundwater samples from CP101 and CP102, and leachate samples TP103 at 2.10 m and WS111 at 2.70 m.

PAH, TPH AND VOC

Elevated concentrations of naphthalene have been identified within groundwater from CP101 against EQS AA and DWS screening values, and groundwater from CP102 against EQS AA values.

Anthracene has been noted to be elevated against EQS AA and MAC screening values in groundwater from WS101.

Groundwater from CP101 has been identified to contain elevated concentrations of aromatic TPH C5– C6 (benzene) against EQS AA and DWS values. Meanwhile groundwater in CP102 has been noted to exceed DWS values.

Aromatic TPH C10–C12 is elevated against EQS AA screening values for groundwater from CP101 and CP102.

Groundwater in CP101 has been noted to contain elevated levels of aromatic TPH C12–C16 against EQS AA and MAC along with DWS screening criteria. Whilst elevated concentrations have also been identified against EQS AA screening values in CP102. Groundwater from CP101 has been identified to contain elevated concentrations of aromatic TPH C16-C35 against EQS AA and MAC screening values. Furthermore, groundwater from CP101 has also identified elevated concentrations of Trichloromethane against EQS AA values, however there is no DWS screening criteria for this determinant.

All exceedances were noted within leachate and groundwater analysis within the Made Ground deposits. Elevated concentrations of VOCs have not been noted within the soil analysis and therefore is not considered a significant source for these determinants.

The source of the elevated TPH within groundwater are considered to be the Made Ground on site as elevated concentrations have been detected within the soils analysis. As part of the remediation and enabling works a phase of hotspot removal should be undertaken in these localities. However, it is thought that this will not remove the source completely. Furthermore, the elevated TPH concentrations within the groundwater have been identified in samples taken from deep groundwater monitoring wells as the base of the Made Ground overlying low permeability CLAY drift deposits. It is considered that this groundwater is perched and is unlikely to affect the underlying Principal aquifer.

It is anticipated that the site is acting as a basin as clay has been extracted from the area previously, and the groundwater at the base of the fill has leached from the Made Ground. Groundwater is likely to move in an easterly or southerly direction towards the River Mersey or Longford Brook. However, there is not considered to be significant lateral movement, as north, south and west of the site has not previously undergone clay extraction, and therefore the clay in situ will act as an impermeable layer. The former clay pits associated with neighbouring brick works advanced eastwards of the site, and therefore should there be any impact off-site it will not wholly be associated with the subject site. The underlying CLAY drift deposits will afford protection to the underlying Principal aquifer within the bedrock geology.

It is likely the proposed development will be constructed using a driven piled foundation, where the piles are likely to be set within the underlying stiff to very stiff CLAY drift deposits, where they will not create a preferential pathway to the Principal aquifer. In order to prevent any risk from vapours to the proposed dwellings, they should be constructed with a vapour membrane. It is recommended that a vapour risk assessment is completed to determine the risk to the proposed development.

Given the determinants identified within sampling completed to date and the underlying Principal aquifer, a detailed P20 DQRA for groundwater along with further sampling should be undertaken.

Based on the above, there is considered to be a moderate level of risk to the controlled water receptors. Furthermore, due to the presence of heavy metals and organic hydrocarbon compounds in the perched groundwater careful consideration as to the risks to site operatives and the possible requirement to pretreat the water will be required.

4.3. GROUND GAS

The potential impact on the development from ground gases has been assessed with reference to standards and guidelines published in CIRIA Report 665 – *Assessing risks posed by hazardous ground gases to buildings* (2007). However, it is recommended that the full ground gas assessment and recommended protection measures are agreed with the local authority prior to their adoption on site. Furthermore, all protection measures adopted should be validated by a suitably qualified engineer.

CIRIA C665 and NHBC Report No 10627-R01 provide assessments for carbon dioxide and methane based upon gas screening values (GSVs) utilising flow rates and concentrations. The site-based GSVs for steady state methane and carbon dioxide are based upon the following equation:

 $GSV = \frac{concentration (by vol)}{100} \times flowrate (1 / hr)$

The GSVs within CIRIA C665 are based upon all buildings other than standard residential houses. The NHBC GSVs are based upon standard residential houses with precast concrete floors (block and beam). The CIRIA 665 report author (Steve Wilson) since provided further clarification regarding which guidance should be adopted for residential houses that have suspended cast in-situ concrete floor slab: for the avoidance of doubt, it was confirmed that the GSVs within the CIRIA 665 guidance should be adopted. The thresholds for GSVs based upon NHBC and CIRIA guidance are provided within Table 4.5.

TABLE 4.5RESIDENTIALTHRESHOLDSFORGASSCREENINGVALUES(GSV)INACCORDANCE WITH CIRIA C665 AND NHBS REPORT NO 10627-R01 – RESIDENTIAL END USE

CIRIA – NO SU	IBFLOOR VOID	NHB	NHBC – SUBFLOOR VOID						
CLASSIFICATION	GSV (METHANE AND CARBON DIOXIDE)	CLASSIFICATION	GSV (METHANE)	GSV (CARBON DIOXIDE)					
CS1	< 0.07	Green	< 0.13	< 0.76					
CS2	< 0.70	Amber 1	< 0.63	< 1.60					
CS3	< 3.5	Amber 2	< 1.60	< 3.10					
CS4	< 15	Red	> 1.60	> 3.10					
CS5	< 70	N/A	N/A	N/A					
CS6	> 70	N/A	N/A	N/A					

4.3.1. SOURCES OF GROUND GAS

The Phase I report and subsequent ground investigation has identified the following potential sources of ground gas:

Made Ground deposits related to the former infilling of the site associated with historical clay pits, ponds and field boundaries.

4.3.2. **GROUNDWATER**

WS102, WS104, CP101 and CP102 have been noted to be flooded on both occasions of monitoring completed thus far and therefore cannot be included within the ground gas risk assessment.

Within the remaining monitoring wells groundwater levels have been shown to decrease over the monitoring completed thus far. WS106 and WS112 have been noted to be dry on both monitoring visits completed to date.

4.3.3. GAS FLOW

During the monitoring completed to date a positive gas flow has been recorded in WS102, WS103, WS105, WS106, WS107, WS108, WS109, WS110, WS111, WS112, CP101 and CP102.

Negative flows are indicative of back pressure from wind being greater than the active flow from the wells. Negative flows were recorded in WS101, WS106 and CP101.

4.3.4. GAS CONCENTRATIONS

Methane has been recorded within all monitoring wells at concentrations varying between 0.10 % v/v (Limit of Detection (LOD)) and 73.80 % v/v (WS103). Elevated concentrations of methane have been recorded in WS101 (15.50 % v/v), WS102 (26.00 % v/v) and WS103 (63.80 % v/v). No elevated concentrations were recorded within any of the remaining monitoring wells.

Carbon dioxide concentrations were recorded within all the monitoring wells at concentrations ranging from 0.10 % v/v (LOD) to a maximum concentration of 4.50 % v/v (WS108). The maximum carbon dioxide levels were also associated with low oxygen concentrations and appear to be associated with Made Ground.

4.3.5. GAS ASSESSMENT

In accordance with the methodology outlined with the CIRIA publication C665, E3P have utilised the results of the ground gas monitoring surveys to calculate a tentative gas screening value (GSV). The GSVs for the monitoring positions are summarised in Table 4.6.

LOCATION	MAX CO ₂ (% v/v)	GSV (I/hr)	MAX CH₄ (% v/v)	GSV (l/hr)	CLASSIFICATION
WS101	3.70	-0.0681	15.50	-0.2542	Amber 2 / CS3
WS102	1.10	0.0029	26.00	0.0676	Red / CS4
WS103	0.20	0.0086	73.80	3.1808	Red / CS4
WS105	0.70	0.0036	0.10	0.0005	Green/ CS1
WS106	1.00	-0.0026	0.10	-0.0003	Green/ CS1
WS107	3.80	0.0337	0.10	0.002	Green/ CS1
WS108	4.50	0.0282	0.10	0.0009	Green/ CS1
WS109	0.90	0.0077	0.10	0.0009	Green/ CS1
WS110	2.30	0.0182	0.10	0.0008	Green/ CS1
WS111	0.40	0.0010	0.10	0.0005	Green/ CS1
WS112	0.70	0.0018	0.10	0.0003	Green/ CS1
CP101	0.10	-0.0043	0.10	-0.0043	Green/ CS1
CP102	0.60	0.0092	0.10	0.0015	Green/ CS1

TABLE 4.6GAS RISK PROFILE AND LOCATION

The GSV has been compared to the criteria outlined with CIRIA C665 to determine the level of risk to the proposed development and to ensure the appropriate remedial options are incorporated into any future building design in this area.

Preliminary ground gas monitoring suggests that the site can be predominantly classified as Green/CS1, and in these areas it is considered that gas protection measures will not be required. However, elevated concentrations of methane have been identified in the south of the site in the vicinity of WS101, WS102, WS103 and have been assessed as being Amber 2 / CS3 and Red/CS4. The gas source is deemed to be associated with the underlying Made Ground deposits where organic and putrescible materials may be present.

Within WS102 hydrocarbon odours were identified during the site investigation and therefore may be attributable to the elevated concentrations of methane.

As WS102 and WS103 have been assessed as being Red / CS4 this would suggest this area is not suitable for residential development. It is suggested that additional monitoring wells are placed in the south of the site to fully delineate the zone of gas risk.

In due consideration of the recorded methane concentrations, a supplementary quantitative risk assessment is required, to ensure a robust assessment of the actual gas concentrations, potential emission rate and flux, it is recommended that real time monitoring apparatus (Gas Clams) are installed within selected positions to determine the actual methane concentration and emission rate to accurately assess the potential risk, characterise the site and inform the design of mitigation measures.

VOCs have been identified within groundwater samples, and the use of driven piles may create a preferential pathway to the properties constructed. At this time provision should be allowed for the construction of properties with a VOC vapour membrane pending a Tier 2 vapour risk assessment

The site should be developed in the south of the site with ground gas mitigation measures in accordance with Amber 2 / CS3 with a VOC vapour membrane as detailed below.

4.4. RESIDENTIAL BUILDING GAS RISK MITIGATION

British Standard BS8485 (2015)+A1(2019) provides two types of residential property that require assessment. These building types are:

- Type A Building Private ownership with no building management controls on alterations to the internal structure, the use of rooms, the ventilation of rooms or the structural fabric of the building. Some small rooms are present. Probably conventional building construction (rather than civil engineering). Examples include private housing and some retail premises.
- Type B Building Private or commercial property with central building management control of any alterations to the building or its uses but limited or no central building management control of the maintenance of the building, including the gas protection measures. Multiple occupancy. Small- to medium-sized rooms with passive ventilation of rooms and other internal spaces throughout ground floor and basement areas. May be conventional building or civil engineering construction. Examples include managed apartments, multiple occupancy offices, some retail premises and parts of some public buildings (such as schools, hospitals, leisure centres) and parts of hotels.

Based on the ground gas risk assessment and the proposed Type A Building, it is envisaged that a point score of 4.5 will be required for affected properties, as summarised in Table 4.7.

TABLE 4.7 BS 8485 (2015)+A1(2019) POINTS REQUIRED FOR TYPE A AND TYPE B BUILDINGS

		Minimum gas protection score (points)				
Characteristic Situation	NHBC Traffic Light System	HIGH SENSITIVITY				
ontation	Cystom	TYPE A BUILDING	TYPE B BUILDING			
1	Green	0	0			
2	Amber 1	3.5	3.5			
3	Amber 2	4.5	4			
4	Red	6.5	5.5			
5	N/A	N/A	6.5			
6	N/A	N/A	N/A			

Residential buildings should not be built on CS4 or higher sites unless the type of construction or site circumstances allow additional levels of protection to be incorporated, for example, high-performance ventilation or pathway intervention measures, and an associated sustainable system of management of maintenance of the gas control system such as in institutional and/or fully serviced contractual situations.

The requisite 4.5 points must be achieved by installation of a suitable combination of measures detailed in Table 4.8.

GAS PF	ROTECTION SCORES FO	OR THE STRUCTU	RAL BAF	RRIER	SCORE ^A		
Floor a	nd Substructure Design						
Precast Suspended Segmental Subfloor (Beam and Block)							
	-Situ Ground-Bearing Fl cement)	oor Slab (With On	ly Nomina	al Mesh	0.5		
	Situ Monolithic Reinfor spended Floor Slab Wit			r Reinforced Cast In-	1 or 1.5 ^B		
	ent Floor and Walls Con roofing ^c	forming to BS 810	2:2009, 0	Grade 2	2		
	ent Floor and Walls Con roofing ^c	forming to BS 810	2:2009, 0	Grade 3	2.5		
have mi	nieve a score of 1.5 the raf inimal penetrations cast in core is conditional on the v oofing product (see C.3 , N	(see A.2.2.2). waterproofing not be			-		
PROTE	CTION ELEMENT SYSTI	EM	SCORE	COMMENTS			
Gas pro	otection scores for venti	lation protection r	neasures	i -			
low fine	ssure Relief Pathway – s gravel or with a thin geo terminating in a gravel tre	composite blanket	0.5	 Whenever possible a pressure pathway (as a minimum) shou installed in all gas protection measystems. If the layer has a low perme and/or is not terminated in a vertice trench (or similar), then the score 			
Layer -	sive Subfloor Dispersal - Media used to provide persal layer are:	Very good performance	2.5	The ventilation effectiveness			
0	Clear void; Polystyrene void former blanket;			different media depends of different factors transmissivity of the med of the building, the s spacing and type and the the layer. The selected	including the dium, the widtl ide ventilation ne thickness o		
	Geocomposite void former blanket;	Good performance	1.5	be assigned taking int recommendations in BS 8485 (2015).	o account the		
0	No-fines gravel layer			Passive ventilation designed to meet at	should be		
	with gas drains; and			performance".	least you		

(c) Active Dispersal Layer – Usually comprising fans with active abstraction (suction) from a subfloor dilution layer with roof-level vents. The dilution layer may comprise a clear void or be formed of geocomposite or polystyrene void formers.	1.5 to 2.5	This system relies on continued serviceability of the pumps, therefore alarm and response systems should be in place. There should be robust management systems in place to ensure the continued maintenance of the system, including pumps and vents. Active ventilation should always be designed to meet at least "good performance".
(d) Active Positive Pressurisation – Provided by the creation of a blanket of external fresh air beneath the building floor slab by pumps supplying air to points across the central footprint of the building into a permeable layer, usually formed of a thin geocomposite blanket.	1.5 to 2.5	This system relies on continued operation of the pumps, therefore alarm and response systems should be in place. The score assigned should be based on the efficient "coverage" of the building footprint and the redundancy of the system. Active ventilation should always be designed to meet at least "good performance".

PROTE	CTION ELEMENT SYSTEM	SCORE	COMMENTS
of the b	tilated Car Park – Floor slab of occupied part uilding under consideration is underlain by a ent or undercroft car park.	4	Assumes that the car park is vented to deal with car exhaust fumes, designed to Buildings Regulations 2000, Approved Document F [9].
Gas Pr	otection Score for the Gas-Resistant Mem	brane	
	sistant membrane meeting all of the ng criteria:		
0	Sufficiently impervious to the gases with a methane gas transmission rate < 40.0 ml/day/m²/atm (average) for sheet and joints (tested in accordance with BS ISO 15105-1 manometric method);		The performance of membranes is
0	Sufficiently durable to remain serviceable for the anticipated life of the building and duration of gas emissions;		heavily dependent on the quality and design of the installation, resistance to damage after installation and integrity of joints.
0	Sufficiently strong to withstand in-service stresses (e.g. settlement if placed below a floor slab);	2	For example, a minimum 0.4 mm thickness (equivalent to 370 g/m ² for polyethylene) reinforced membrane (virgin polymer) meets the
8	Sufficiently strong to withstand the installation process and following trades until covered (e.g. penetration from steel fibres in fibre-reinforced concrete, penetration of reinforcement ties, tearing due to working above it, dropping tools);		If a membrane is installed that does not meet all the criteria opposite, then the score is 0.
8	Capable, after installation, of providing a complete barrier to the entry of the relevant gas; and		
0	Verified in accordance with CIRIA C735.		
This tab	ble should be read in conjunction with the note	es presen	ted in BS 8485 (2015)+A1 (2019)

4.5. POTABLE WATER SUPPLY

This section provides a summary of the site investigation data with reference to the selection of potable water supply pipework. The assessment is made with reference to the UK Water Industry Research (UKWIR) publication "*Guidance on the selection of Water Supply Pipes to be used in Brownfield Sites*"

TABLE 4.9 PIPELINE SELECTION PE THRESHOLD CONCENTRATIONS

Contaminant Group	PE- threshold (mg/kg)	Concentrations at <u>Current</u> pipeline depth (mg/kg)		
Total VOC	0.5	N/A		
Total BTEX And MTBE	0.1	N/A		
Total SVOCs (Excluding PAH and those substances marked with an *)	2	N/A		
EC5-EC10 Aliphatic and Aromatic Hydrocarbons	2	<1.0		
EC10-EC16- Aliphatic and Aromatic Hydrocarbons	10	61 mg/kg TP103 1.30 m 24.3 mg/kg TP128 0.80 m		
EC16-EC40 Aliphatic and Aromatic Hydrocarbons	500	657 mg/kg TP128 0.80 m		
Phenols (From SVOC Analysis)*	2	N/A		
Cresols and Chlorinated Phenols (From SVOC Analysis)	2	NA		
Ethers*	0.5	NA		
Nitrobenzene*	0.5	NA		
Ketones*	0.5	NA		
Aldehydes*	0.5	NA		
Amines	Fail	NA		
Other Consideration				
Are there any exceedances of the PE threshold outside of the pipeline depth?	Elevated SVOC 2-Methylnaphthalene within TP127 at 1.80 m (4.00 mg/kg) have been identified. Elevated concentrations above the PE			
	threshold for EC10-EC16- Aliphatic and Aromatic Hydrocarbons and EC16-EC40 Aliphatic and Aromatic Hydrocarbons have been identified.			
Is free product present in soil and groundwater?		centrations of hydrocarbons identified within soil and		
Could hydrocarbon impact at greater depth than current pipeline depth be mobilised by rising groundwater levels?	Heavy end hydrocarbon impact and low solubility PAH has been identified within Made Ground at depths above or below the proposed pipeline depth. Rapid groundwater strikes have also been identified between 1.20 m and 4.30 m bgl			
Will soils impacted with above determinands likely be utilised elsewhere on site?		nined, site likely to undergo site wide turnover to create a atform.		

Page 57

Will soils be imported to site as part of any future earth works

Currently unknown, however it is likely soils will be required to be imported to site.

Notes - Pipe line depth normally between 0.75m-1.35m

It is considered that barrier pipe will be required unless soils containing elevated concentrations of SVOCs and TPHs are removed during remediation and enabling works.

4.6. CONCEPTUAL SITE MODEL

Following the completion of the intrusive site investigation, chemical analysis and risk assessment, the conceptual model shown in Table 4.10 has been prepared for the site.

POLLUTANT LINKAGE	CONTAMINANT (SOURCE)	PATHWAY	RECEPTOR	PROBABILITY	CURRENT RISK	RESIDUAL RISK AFTER MITIGATION
PL1	Dermal contact	Future site users.	Heavy metals and			
PL2	Dermal contact and Soil Ingestion	Offsite recentors	non-volatile PAHs (in Made Ground).	Likely	Moderate	LOW

TABLE 4.10CONCEPTUAL MODEL

Discussion:

Heavy metals and non-volatile PAHs have been identified throughout Made Ground deposits between depths of 0.10 m and 12.70 m bgl associated with the former infilling of clay pits on site.

Recommendation:

The chronic risk to human health associated with the elevated concentrations of inorganic heavy Metals and non-volatile PAHs can be mitigated through the installation of a suitable cover system in all proposed private gardens, landscaping and Public Open Space to remove any potential for direct exposure to impacted soils to future site users. Construction works completed with PPE and provision of welfare.

POLLUTANT LINKAGE	CONTAMINANT (SOURCE)	PATHWAY	RECEPTOR	PROBABILITY	CURRENT RISK	RESIDUAL RISK AFTER MITIGATION
PL3	ACM in Made Ground	Inhalation of dust.	Future site users. Buildings. Off-site land users.	Likely	High	LOW

Asbestos has been identified in four locations. Quantification identified concentrations to be <0.001% in WS110 at 0.50 m bgl. However, concentrations have been identified within WS101 1.80 m bgl at 1.18%, WS102 3.20 m bgl at 0.036% and WS112 2.30 m bgl at 0.014%. Visual pieces of asbestos were also identified during the intrusive site investigation.

Recommendation:

Further investigation is required to identify and remove any potential visual signs of ACM across the site. Care must be taken in the demolition of the buildings as asbestos roofing and cladding is likely present. Impacted soils and visual signs of ACMs will need to be managed according to the Asbestos Risk Mitigation Conceptual Site Model shown in Figure 4.1 including the installation of a suitably cover system to garden and landscaped areas which will prevent exposure to future site users. Construction works completed with PPE and provision of welfare in accordance with JIWG guidelines.

Where asbestos has been identified >0.001% in WS101, WS102 and WS112, the impacted Made Ground will require hotspot removal and placement in an area of low sensitivity where it will not pose a risk to future end users. Visual signs of asbestos will require removal from site by a licensed waste handler, with subsequent validation sampling to determine if asbestos remains at the locations.

POLLUTANT LINKAGE	CONTAMINANT (SOURCE)	PATHWAY	RECEPTOR	PROBABILITY	CURRENT RISK	RESIDUAL RISK AFTER MITIGATION
PL4	Inhalation of vapours. Migration through permeable strata and preferential pathways.	Futuro sito usors	Volatile Contaminants such as naphthalene, mercury, VOCs and volatile-TPHs (Made Ground)	Likely	High	To Be Determined

Elevated concentrations of naphthalene, mercury and volatile TPHs have been identified within isolated concentrations across the site. The SVOC 2-Methylnaphthalene was identified above the limit of detection in TP116 at 1.50 m bgl (0.5 mg/kg), TP127 (4.0 mg/kg) and WS102 (3.20 mg/kg). Elevated concentrations of VOCs have also been identified within groundwater samples.

Recommendation:

Localised areas of volatile naphthalene, mercury and TPH impact has been identified within discreet locations (hotspots); these compounds pose a theoretical risk associated with volatilisation and subsequent ingress into the proposed dwellings (indoor air). Further testing should be completed to confirm the type of mercury present and whether it presents a vapour risk. Should it be volatile a hotspot removal should be undertaken.

It is recommended that a Tier 2 vapour risk assessment is completed, as due to the homogenous nature of the fill materials it cannot be proven at this juncture if volatile compounds are present throughout the Made Ground or isolated within the locations identified thus far. Following the Tier 2 vapour risk assessment should these locations be deemed as hotspots, it will be necessary to delineate the extent of impact and ensure all material is excavated, analysed, treated for either reuse within an area of no sensitivity (post treatment) or, alternatively, removed from site.

POLLUTANT LINKAGE	CONTAMINANT (SOURCE)	PATHWAY	RECEPTOR	PROBABILITY	CURRENT RISK	RESIDUAL RISK AFTER MITIGATION
PL5	Methane, carbon dioxide (infilled features on and within 250 m of the site)	Inhalation of gas. Migration through permeable strata and preferential pathways. Explosion in confined spaces.	Future site users. Buildings. Off-site land users.	Low likelihood	High (South)	To be determined

Preliminary ground gas monitoring suggests that the northern sector of the site can be predominantly classified as Green/CS1, and in these areas it is considered that gas protection measures will not be required. However, the south of the site has been assessed as being Amber 2 / CS3 and Red/CS4. The gas source is deemed to be associated with the underlying Made Ground deposits. As WS102 and WS103 have been assessed as being Red/ CS4 this would suggest this area is not suitable for residential development. It is suggested that additional monitoring wells are placed in the south of the site to fully delineate the zone of gas risk along with a phase of continuous ground gas monitoring.

Recommendation:

An assessment of the likely source of hazardous ground gasses will be completed once further monitoring has been completed.

In due consideration of the recorded methane concentrations, a supplementary quantitative risk assessment is required, to ensure a robust assessment of the actual gas concentrations, potential emission rate and flux; it is recommended that real time monitoring apparatus is installed within selected positions to determine the actual methane concentration and emission rate.

Full ground gas protection measures to be confirmed following completion of monitoring regime. A provision for the installation of ground gas protection measures adhering to Amber 2 / CS3 with VOC vapour membranes should be put in place.

POLLUTANT LINKAGE	CONTAMINANT (SOURCE)	PATHWAY	RECEPTOR	PROBABILITY	CURRENT RISK	RESIDUAL RISK AFTER MITIGATION
PL6	Mobile contaminants such as metals, PAHs, hydrocarbons, volatile compounds (Made Ground, infilled ponds and clay pits)	Surface runoff. Migration through permeable strata and preferential pathways. Perched waters migration.	Groundwater (Principal aquifer). Surface water (Longford Brook). Three abstraction Points Thirlmere Aqueduct	Likely	Moderate	LOW

Elevated concentrations of heavy metals, cyanide, PAH, TPH and VOCs within groundwater and leachate samples. Given that the site is predominantly underlain by CLAY this may afford some protection to the underlying Principal Aquifer in the bedrock. Off-site surface water features are not considered at risk as cohesive CLAY drift deposits will limit the lateral migration of determinants.

Recommendation:

Given the sensitivity of the underlying principal aquifer and proximity of surface water receptors E3P recommend that additional groundwater and leachate analysis will be required to delineate any previously identified contamination and to complete m-BAT bioavailability analysis of heavy metals along with a detailed P20 DQRA for groundwater.

During the remediation and enabling works, hotspots will need to be delineated and validated through chemical analysis; additionally further leachate analysis will be required when engineering the Made Ground to ensure that no unacceptable materials are placed that could pose a risk to controlled waters. In addition, if any tanks or visually impacted waters with olfactory evidence are identified further risk assessment will be required.

Ryebank Road Phase II Geoenvironmental Site Assessment March 2020

POLLUTANT LINKAGE	CONTAMINANT (SOURCE)	PATHWAY	RECEPTOR	PROBABILITY	CURRENT RISK	RESIDUAL RISK AFTER MITIGATION
PL7	Sulphate (potential ash within MADE GROUND)	Sulphate attack on concrete.	Building structure.	Likely	Low	LOW

Assessment:

Chemical analyses for pH and soluble sulphate content contained in Appendix V (summarised in Table 3.11), shows that the soils at the site generally meet Class DS-1, Aggressive Chemical Environment for Concrete Classification (ACEC) AC-1s in accordance with BRE Special Digest 1 (2005). Elevated sulphate concentrations meeting Class DS-2, AC-1 were noted within the Made Ground deposits in WS102 at 3.20 m bgl.

Recommendation:

Remediation of soils required.

PL8 solvents (MADE Ingestion of tainted water supply	Future site users. Water pipes.	Likely	Moderate	LOW
--	------------------------------------	--------	----------	-----

Assessment:

Likely probability as significant contamination anticipated at pipeline depth across the west of the site (0.75-1.35m).

Recommendation:

It is considered that barrier pipe will be required to be confirmed following the completion of a UKWIR risk assessment.

POLLUTANT LINKAGE	CONTAMINANT (SOURCE)	PATHWAY	RECEPTOR	PROBABILITY	CURRENT RISK	RESIDUAL RISK AFTER MITIGATION
PL9	Phytotoxic contaminants (Made Ground)	Direct Contact (plant uptake).	Flora.	Likely	Moderate	LOW

Likely probability as contamination considered possible, which may be taken up by flora in soft landscaping/gardens.

Recommendation:

The contaminated material will likely be removed or the installation of a suitably designed cover system within gardens and areas of soft standing and landscaped areas.

Main exposure pathways:

PL1 = dermal contact, PL2 = dermal contact and ingestion, PL3 = dust inhalation, PL4 = vapour inhalation (indoor), PL5 = Inhalation, PL6 = Vertical/lateral migration; PL7 = Corrosion of concrete; PL8=Tainting of water supply; PL9 = Uptake by plants

5. GEOTECHNICAL ASSESSMENT

5.1. PROPOSED DEVELOPMENT

E3P understands that Manchester Metropolitan University (MMU) are considering the proposed divestment of their asset at Ryebank Fields, Chorlton which is deemed to be surplus to requirement. As part of the divestment a Development Framework was approved by Manchester City Council in June 2019 that promotes a high-quality residential development across the site with associated gardens, estate roads and infrastructure. The Development Framework contains the proposed development layout for the site.

5.2. SUMMARY OF GROUND CONDITIONS

Made Ground

Made Ground deposits were encountered within all exploratory hole locations to a maximum depth of 12.70 mbgl in CP101. The full depth of Made Ground was only proven within two exploratory hole locations CP101 and CP102.

The majority of exploratory hole locations were surfaced by a reworked topsoil to depths of between 0.10 m and 0.30 mbgl comprising a brown slightly clayey slightly sandy gravel with occasional cobbles and frequent rootlets, with gravel of sandstone, mudstone, concrete and brick with cobbles of concrete and brick.

TP129, TP130 and WS112 located in the area of hardstanding in the south of the site, were all overlain by asphalt to depths of between 0.10 m and 0.20 mbgl.

Underlying the reworked topsoil and asphalt, the deeper underlying Made Ground was largely granular, comprising a sandy ashy gravel which was encountered to depths of between 1.60 m and 12.70 mbgl. Made Ground consisted black sandy gravel (ashy) with occasional cobbles where gravel was of asphalt, ash, concrete, brick, plastic, and on occasion metal and glass. Cobbles comprised concrete and brick.

Isolated areas of reworked clay were identified in TP102, WS102, WS103, WS108 and WS112, encountered at depths of between 0.20-2.50 mbgl. to a maximum depth of 3.45 mbgl. and comprised a firm to stiff brown gravelly clay, with gravel of brick and concrete.

White ash in the form of a grey blue clayey sand was encountered in pockets throughout the granular Made Ground in TP111, TP113, TP115, TP120, TP129, to depths of between 1.20 m bgl and 2.20 m bgl. The White ash was also encountered as bands in TP103 between 2.10m and 2.40 m bgl, WS105 between 3.60 m and 4.00 m bgl and WS111 between 2.00 m and 2.80 m bgl.

🟮 Drift

Drift deposits were only encountered within CP101 at 12.70 m and 14.95 mbgl and within CP102 at 10.20 m and 14.95 mbgl comprising a very stiff high strength sandy CLAY with bands of fine to medium SAND.

🕴 Solid

The solid bedrock geology was not encountered within any exploratory hole locations and was not located within any BGS boreholes in close proximity to the site.

Groundwater

Groundwater strikes were encountered as strikes and seepages between 1.20 m and 4.30 m bgl.

5.3. SITE PREPARATION

The site should be cleared and any vegetation below areas of proposed development stripped in accordance with Series 200 of the *Manual of Contract Documents for Highway Works (MCHW)*. This should include the following:

- Roots present below the footprint of proposed structures and infrastructure should be grubbed out and the resulting void infilled with suitable compacted engineered fill.
- Removal of all concrete and asphalt hardstanding.
- Redundant services should be sealed off and grubbed out and replaced with suitable compacted engineered fill.
- Buried structures and old foundations have been encountered on site. These should be excavated from below the proposed development footprint with the resulting void backfilled.

5.4. FOUNDATION CONDITIONS AND ASSESSMENT OF POTENTIAL BEARING CAPACITIES

In due consideration of the identified ground conditions, in-situ and laboratory geotechnical testing, E3P has undertaken an assessment of the net safe allowable bearing pressure (ABP) within the underlying natural stratum to assist in the detailed design of foundations and infrastructure and determine the target founding stratum. The results of this assessment are summarised in Table 5.1.

COHESIVE SOILS							
Description	Depth (range m bgl)	Undrained Shear Strength (Cu) (kN/m²)	Allowable Bearing Pressure (kN/m²)				
Stiff medium strength gravelly CLAY	12.50	73.06	150.21				
Very stiff high to very high strength gravelly CLAY	igh strength gravelly 11.00 – 14.50		222.60-375.53				

TABLE 5.1 SUMMARY OF ABPS IN MADE GROUND

Based on the assessment of the relative undrained shear strength, relative in-situ densities and corresponding safe net allowable bearing pressure, the suitable target founding stratum has been identified as the underlying stiff to very stiff CLAY.

The site is entirely underlain by deep Made Ground to depths of up to 12.70 m bgl. The underlying Made Ground predominantly comprises a sand or gravel containing ash, which has been assessed as very loose to dense.

A programme of remediation and enabling works will be required to remove the extensive buried obstructions and cut/fill the site to provide suitable development platform levels.

Due to the presence of deep Made Ground throughout the site it is thought that the most suitable foundation solution would be to utilise a driven pile into the natural underlying stiff to very stiff CLAY or a implement a raft foundation solution.

Due to the age of the backfill material the near surface stratum may have been subject to long term total self-weight settlement with pore water dissipation at varying degrees, it is therefore considered that significant future consolidation of this material would be unlikely in the unaltered state. Within the deeper Made Ground the overburden pressures of >60KPa have acted as surcharge pressures for the past 30+ years and as such long-term total and differential settlement is considered to have ceased.

Consideration must also be given to potential changes in the groundwater regime within deep filled quarry.

Viable ground engineering solutions include wholesale lift and process with subsequent replacement of all materials incorporating mechanical stabilisation features (Triaxial Geo-Grid with high tensile strength) which would form a stiffened soil platform on which a raft foundation could be constructed. The stiffened soil platform would be designed to ensure that materials are compacted to an end product specification that would ensure materials are compacted and that the density of the re-engineered material exceeds 95% of the optimum compaction potential simulated in a laboratory environment using a 2.5 kg remoulded sample.

The viability of a VSC solution is inhibited due to the depth of Made Ground encountered on site exceeding 8.00 m along with the proximity of an intermediate pressure gas main dissecting the site and the Thirlmere Aqueduct along the northern boundary of the site.

The proctor compaction tests completed on the underlying Made Ground deposits have indicated that the majority of materials analysed are wet of the optimum. It should be noted that if cohesive materials are excavated for use in a cut/fill operation careful consideration should be taken in the stabilisation of this material. Engineering of this type of material will need to be completed during dry weather periods only.

Foundation depths should take account of the presence of existing and proposed trees with foundations deepened locally, to mitigate the potential for volumetric instability attributed to fluctuations in moisture content, in accordance with the requirements of NHBC standards.

It is recommended that at working drawing stage a foundation schedule is prepared for the development taking account of the physical change of Made Ground clay soils and the current / proposed locations of trees.

Consideration must also be given to the fact that the site has been classified as moderate to high risk from possible Unexploded Ordnance (UXO) resulting from the Second World War. The site will therefore require clearance prior to the installation of any foundation solution.

5.5. GROUND FLOOR SLABS

Current building control regulations require that where infilled ground is present to depths in excess of 600 mm, or where the substratum is variable in terms of the structure and settlement potential, or where clay soils are present within the influence of existing or proposed trees, a suspended floor slab is required.

In this instance, it is considered that for the majority of substructures, the underlying stratum would have in excess of 600 mm of infill and, as such, a suspended floor slab will be required.

Where a cast in-situ suspended slab is utilised with no subfloor void, appropriate compressible material (heave precautions) will be required in the construction of the substructure.

5.6. HEAVE PRECAUTIONS

The site has been proven to be underlain by clay soils at depth and these are not considered to be susceptible to volumetric instability due to fluctuations in moisture content within influencing distance of trees.

Should CLAY deposits be encountered are susceptible to volumetric instability due to fluctuations in moisture content, particularly within influencing distance of trees as per the NHBC/LABC conjectured zones of influence an assessment of the plasticity will be required.

As the clay that has been encountered on site is deemed to be low plasticity, heave precautions are not required to the internal face of the external load-bearing walls (outside or within tree influence).

If a ground beam is to be constructed within the zone of tree influence, heave precautions are required to the underside of this and edge beams.

If the ground floor slab is to be constructed with a beam and block floor, a minimum subfloor void of 200 mm is required within any structures located in the zone of conjectured tree influence.

If the ground floor slab is constructed with a cast in-situ suspended floor slab, then heave precautions that can tolerate 50 mm of clay swelling are required within any part of the floor slab to be located within the zone of influence of a tree.

A summary of heave precautions is presented in Table 5.5.

TABLE 5.5 SUMMARY OF HEAVE PRECAUTIONS						
		Minimum void dimens ground beams and susp ground f	Minimum void dimensions under precast concrete and suspended timber floors			
Plasticity Index of Soil	Required Foundation Depth (m)	Thickness of Void Former Against Side of Foundation or Ground Beam (mm) Thickness of V Former on Underside of Ed Beam and Flo Slab (mm)		Void Dimension (mm)		
High Plasticity (> 40)	> 2.5	Engineer	Engineer Design			
	2.0–2.5	35	150	200		
	1.5–2.0	25	75	300		
Moderate Plasticity (20–40)	> 2.5	Engineer	Engineer Design			
	2.0–2.5	25	100	250		
	1.5–2.0	25	50			
Low Plasticity (< 20)	2.0–2.5	N/A	50			
	> 2.0	No Special Precautions		200		

TABLE 5.5SUMMARY OF HEAVE PRECAUTIONS

5.7. HIGHWAYS CONSTRUCTION

A programme of remediation and enabling works will be required to remediate the proposed road subgrade in accordance with the requirements of the Manual Of Contract Documents For Highway Works Volume 1 - Specification For Highway Works Series 600.

It is considered that the material can be re-engineered using method compaction to achieve a CBR in excess of 5% if works are completed in favourable climatic conditions.

5.8. DRAINAGE

In-situ variable (falling) head permeability tests were undertaken within the monitoring well installations located in two probeholes (CP101 and CP102). Both of the installations were noted to be dry prior to the test being undertaken, therefore the tests were undertaken in the unsaturated zone. Infiltration tests in both CP101 and CP102 were completed in the underlying Made Ground where a soil infiltration rate of 1.32E-05 m/s and 1.56E-05 m/s have been calculated respectively. The site is underlain by Made Ground impacted by low-level inorganic and hydrocarbon compounds. It is therefore considered that soakaway drainage will not be suitable for the proposed development.

5.9. CONCRETE DURABILITY

Based upon the results of the chemical analyses it is considered that subsurface concrete can be designed in accordance with Design Sulphate Class DS-1, Aggressive Chemical Environment for Concrete Classification (ACEC) AC-1s in accordance with the recommendations provided in BRE *Special Digest 1* (2005).

Elevated sulphate concentrations meeting Class DS-2, AC-1s were noted within the Made Ground deposits in WS102 at 3.20 mbgl. However, upon completion of site enabling works it will, in all likelihood, be DS1 AC1s.

5.10. EXCAVATIONS

The majority of excavations were prematurely terminated due to collapse or rapid groundwater strikes flooding the excavation.

If local pumping of groundwater is required during the advancement of excavations for the proposed foundations then consideration should be given to the potential for dewatering gravels in the surrounding areas that may cause structural damage to building substructures in close proximity to the site.

Due to the depth and variability of the Made Ground and likelihood of trench collapse, it is considered that all excavations are supported or battered back in accordance with guidance contained in CIRIA R97.

The presence of brick and concrete cobbles within the Made Ground deposits meant that in certain places, excavation was slow.

During a phase of cut fill enabling works to create a developable platform, all below ground obstructions will require grubbing out to the base of the Made Ground to enable the construction of proposed plots.

RISK ITEM	PRESENT	COMMENT							
Running Sands	No	No running sand has been identified.							
Minor Water Ingress	Yes	Minor water ingress will require localised dewatering/sump pumping during the construction of site drainage infrastructure. Ingress of water into foundation excavations will potentially flood foundation excavations, limiting the viability of spread foundations to be constructed.							
Shallow Bedrock	No	Shallow bedrock has not been identified.							

 TABLE 5.6
 CIVIL ENGINEERING EXCAVATION RISK MATRIX

5.11. FURTHER WORKS

Based on the findings of the intrusive site investigation, the following additional works are recommended to be completed in due course:

- Further controlled waters risk assessment using the mBAT tool for heavy metals following the completion of supplementary groundwater sampling;
- Further site investigation will be required in the west of the site where access was restricted due to the presence of overgrown vegetation, a gas main and semi-improved neutral grassland;
- Continuous ground gas monitoring in the vicinity of WS102 and WS103 in the south of the site;
- Plot-specific foundation schedule (upon receipt of the final development levels and proposed development layout);
- Materials management plan;
- Geotechnical earthworks strategy (infrastructure);
- Remediation and enabling works strategy; and
- Full three-dimensional earthworks cut/fill model.

5.12. CONSTRUCTION ACTIVITY AND INSPECTION

The following activities and inspections should be incorporated into the site works:

- Due to the variability of the soils at the site, it is recommended that sufficient allowance is made for the inspection of formations and sub-formations to foundations and pavement construction.
- Excavations where access is required should be subject to a risk assessment from a competent person and, where appropriate, mitigation measures such as benching back the sides or use of support systems in accordance with CIRIA R97 should be utilised.
- It is considered that dewatering may be required, especially following periods of heavy rainfall. Removal of surface water and water within trenches should be possible with conventional sump pumping. Discharge of any water should be agreed with the relevant regulatory body and be undertaken under a trade effluent discharge, where required. Measures to remove silt and suspended solids may be required and consideration should be given to provision of space for settling tanks or an attenuation pond.
- Where access to confined spaces is required, appropriate mitigation measures should be addressed within the construction stage health and safety plan. Particular account should be taken of the gas results.
- The presence of potential contamination and mitigation measures should be addressed as part of the construction stage health and safety plan and should include measures to design out the risks, reduce their impact and, finally, to include the use of personnel protective equipment (PPE).

6. CONCLUSIONS AND RECOMMENDATIONS

CONTAMINATED LAND ASSESSMENT

Human Health	The Tier 1 human health risk assessment identified site wide concentrations of heavy metals, non-volatile PAHs, and non-volatile TPH compounds that would present unacceptable degrees of theoretical risk to the identified receptors associated with direct exposure pathways. As such, it will be necessary to design and construct the proposed development in a manner that will ensure suitably validated cover systems to all areas of private garden, soft landscaping and public open space.
	Localised areas of volatile naphthalene, mercury and TPH impact has been identified within discreet locations (hotspots); these compounds pose a theoretical risk associated with volatilisation and subsequent ingress into the proposed dwellings (indoor air). Further testing should be completed to confirm the type of mercury present and whether it presents a vapour risk. Should it be volatile a hotspot removal should be undertaken.
	It is recommended that a Tier 2 vapour risk assessment is completed, as due to the homogenous nature of the fill materials it cannot be proven at this juncture if volatile compounds are present throughout the Made Ground or isolated within the locations identified thus far. Following the Tier 2 vapour risk assessment should these locations be deemed as hotspots, it will be necessary to delineate the extent of impact and ensure all material is excavated, analysed, treated for either reuse within an area of no sensitivity (post treatment) or, alternatively, removed from site.
	Asbestos was identified in four samples out of seventeen submitted for analysis. Asbestos in the form of chrysotile and amosite loose fibrous debris, loose fibres, bitumen and hard / cement type material. Asbestos was identified within WS102 at 3.20 m bgl, WS112 at 2.30 m bgl, WS110 at 0.50 m bgl and WS101 a 1.80 m bgl. Asbestos piping and sheeting were visually identified in TP116 and TP119 respectively; during the remediation and enabling works these should be removed from site by a licensed asbestos removal contractor. Impacted soils should be managed according to the E3P asbestos risk mitigation conceptual site model.
	There have been no VOCs identified above the LOD within the soil analysis. The SVOC 2-Methylnaphthalene was identified above the limit of detection in TP116 at 1.50 m bgl (0.5 mg/kg), TP127 (4.0 mg/kg) and WS102 (3.20 mg/kg) which was identified in the Made Ground deposits associated with the infilling of the clay pits.
	There are no suitable sources of topsoil or subsoil available on the site.
	Further site investigation will be required in the west of the site where access was restricted due to the presence of overgrown vegetation, a gas main and semi-improved neutral grassland.
Controlled Waters	Elevated concentrations of heavy metals, cyanide, PAH, TPH and VOCs within groundwater and leachate samples. Given that the site is predominantly underlain by CLAY this may afford some protection to the underlying Principal aquifer in the bedrock. Off-site surface water features are not considered at risk as cohesive CLAY drift deposits will limit the lateral migration of determinants.

Controlled Waters Cont.	Given the sensitivity of the underlying Principal aquifer and proximity of surface water receptors E3P recommend that additional groundwater and leachate analysis will be required to delineate any previously identified contamination and to complete m-BAT bioavailability analysis of heavy metals along with a detailed P20 DQRA for groundwater. During the remediation and enabling works, hotspots will need to be delineated and validated through chemical analysis; additionally further leachate analysis will be required when engineering the Made Ground to ensure that no unacceptable materials are placed that could pose a risk to controlled waters. In addition, if any tanks or visually impacted waters with olfactory evidence are identified further risk assessment will be required.
Ground Gas	Preliminary ground gas monitoring suggests that the northern sector of the site can be predominantly classified as Green/CS1, and in these areas it is considered that gas protection measures will not be required. However, the south of the site has been assessed as being Amber 2 / CS3 and Red/CS4. The gas source is deemed to be associated with the underlying Made Ground deposits. As WS102 and WS103 have been assessed as being Red/ CS4 this would suggest this area is not suitable for residential development. It is suggested that additional monitoring wells are placed in the south of the site to fully delineate the zone of gas risk along with a phase of continuous ground gas monitoring.
	Full ground gas protection measures to be confirmed following completion of monitoring regime. A provision for the installation of ground gas protection measures adhering to Amber 2 / CS3 with VOC vapour membranes should be put in place.
Potable Water	This will need to be confirmed following the completion of a UKWIR risk assessment. Post-remediation and enabling works ground conditions may be different from those identified during this site investigation however it is likely PE Barrier Pipe will be required.

GEOTECHNICAL ASSESSMENT

Based on the assessment of the relative undrained shear strength, relative in-situ densities and corresponding safe net allowable bearing pressure, the suitable target founding stratum has been identified as the underlying stiff to very stiff CLAY.

The site is entirely underlain by deep Made Ground to depths of up to 12.70 m bgl. The underlying Made Ground predominantly comprises a sand or gravel containing ash, which has been assessed as very loose to dense.

A programme of remediation and enabling works will be required to remove the extensive buried obstructions and cut/fill the site to provide suitable development platform levels.

Due to the presence of deep Made Ground throughout the site it is thought that the most suitable foundation solution would be to utilise a driven pile into the natural underlying stiff to very stiff CLAY or a implement a raft foundation solution.

Due to the age of the backfill material the near surface stratum may have been subject to long term total self-weight settlement with pore water dissipation at varying degrees, it is therefore considered that significant future consolidation of this material would be unlikely in the unaltered state. Within the deeper Made Ground the overburden pressures of >60KPa have acted as surcharge pressures for the past 30+ years and as such long-term total and differential settlement is considered to have ceased.

Consideration must also be given to potential changes in the groundwater regime within deep filled quarry.

Viable ground engineering solutions include wholesale lift and process with subsequent replacement of all materials incorporating mechanical stabilisation features (Triaxial Geo-Grid with high tensile strength) which would form a stiffened soil platform on which a raft foundation could be constructed. The stiffened soil platform would be designed to ensure that materials are compacted to an end product specification that would ensure materials are compacted and that the density of the re-engineered material exceeds 95% of the optimum compaction potential simulated in a laboratory environment using a 2.5 kg remoulded sample.

The viability of a VSC solution is inhibited due to the depth of Made Ground encountered on site exceeding 8.00 m along with the proximity of an intermediate pressure gas main dissecting the site and the Thirlmere Aqueduct along the northern boundary of the site.

The proctor compaction tests completed on the underlying Made Ground deposits have indicated that the majority of materials analysed are wet of the optimum. It should be noted that if cohesive materials are excavated for use in a cut/fill operation careful consideration should be taken in the stabilisation of this material. Engineering of this type of material will need to be completed during dry weather periods only.

Foundation depths should take account of the presence of existing and proposed trees with foundations deepened locally, to mitigate the potential for volumetric instability attributed to fluctuations in moisture content, in accordance with the requirements of NHBC standards.

It is recommended that at working drawing stage a foundation schedule is prepared for the development taking account of the physical change of Made Ground clay soils and the current / proposed locations of trees.

Consideration must also be given to the fact that the site has been classified as moderate to high risk from possible Unexploded Ordnance (UXO) resulting from the Second World War. The site will therefore require clearance prior to the installation of any foundation solution.

END OF REPORT

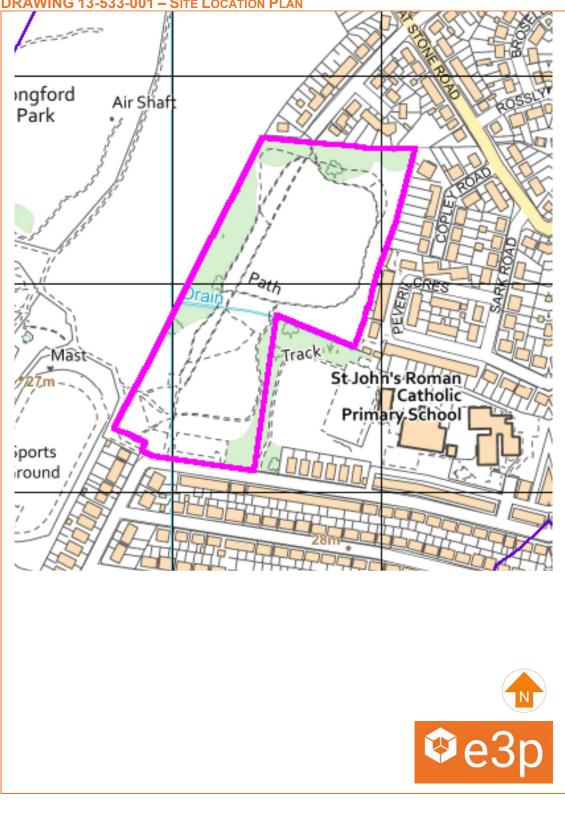
APPENDIX I LIMITATION

- 1. This report and its findings should be considered in relation to the terms of reference and objectives agreed between E3P and the client as indicated in Section 1.3.
- 2. For the work, reliance has been placed on publicly available data obtained from the sources identified. The information is not necessarily exhaustive and further information relevant to the site may be available from other sources. When using the information it has been assumed it is correct. No attempt has been made to verify the information.
- 3. This report has been produced in accordance with current UK policy and legislative requirements for land and groundwater contamination which are enforced by the local authority and the Environment Agency. Liabilities associated with land contamination are complex and requires advice from legal professionals.
- 4. During the site walkover, reasonable effort has been made to obtain an overview of the site conditions. However, during the site walkover, no attempt has been made to enter areas of the site that are unsafe or present a risk to health and safety, are locked, barricaded, overgrown, or the location of the area has not been made known or accessible.
- 5. Access considerations, the presence of services and the activities being carried out on the site limited the locations where sampling locations could be installed and the techniques that could be used.
- 6. Site sensitivity assessments have been made based on available information at the time of writing and are ultimately for the decision of the regulatory authorities.
- 7. Where mention has been made to the identification of Japanese Knotweed and other invasive plant species and asbestos or asbestos-containing materials, this is for indicative purposes only and do not constitute or replace full and proper surveys.
- 8. The executive summary, conclusions and recommendations sections of the report provide an overview and guidance only and should not be specifically relied upon without considering the context of the report in full.
- 9. E3P cannot be held responsible for any use of the report or its contents for any purpose other than that for which it was prepared. The copyright in this report and other plans and documents prepared by E3P is owned by them and no such plans or documents may be reproduced, published or adapted without written consent. Complete copies of this may, however, be made and distributed by the client as is expected in dealing with matters related to its commission. Should the client pass copies of the report to other parties for information, the whole report should be copied, but no professional liability or warranties shall be extended to other parties by E3P in this connection without their explicit written agreement there to by E3P.
- 10. New information, revised practices or changes in legislation may necessitate the reinterpretation of the report, in whole or in part.

APPENDIX II GLOSSARY

TERMS

ACM	Asbestos-containing material	MMP	Materials management plan				
ADS	Acoustic design statement	ND	Not detected				
AST	Above-ground storage tank	NDP	Nuclear density probe				
BGS	British Geological Survey	NMP	Noise management plan				
BSI	British Standards Institute	NPSE	Noise policy statement for England				
BTEX	Benzene, toluene, ethylbenzene, xylenes	NR	Not recorded				
CA	Coal Authority	PAH	Polycyclic aromatic hydrocarbon				
CBR	California bearing ratio	РСВ	Polychlorinated biphenyl				
CIEH	Chartered Institute of Environmental Health	PI	Plasticity index				
CIRIA	Construction Industry Research Association	PID	Photo ionisation detector				
CLEA	Contaminated land exposure assessment	POS	Public open space				
CML	Council of Mortgage Lenders	PPE	Personnel protective equipment				
CoC	Contaminants of concern	ProPG	Professional practice guidance				
CSM	Conceptual site model	QA	Quality assurance				
DNAPL	Dense non-aqueous phase liquid (chlorinated solvents, PCB)	SGV	Soil guideline value				
DWS	Drinking water standard	SPH	Separate-phase hydrocarbon				
EA	Environment Agency	SPT	Standard penetration test				
EQS	Environmental quality standard	SVOC	Semi-volatile organic compound				
FFL	Finished floor level	ТРН	Total and speciated petroleum hydrocarbon				
GAC	General assessment criteria	TPH CWG	Total Petroleum Hydrocarbon (Criteria Working Group)				
GL	Ground level	UKWIR	United Kingdom Water Infrastructure Risk				
GSV	Gas screening value	UST	Underground storage tank				
нси	Health criteria value	VCC	Vibro-concrete column				
ICSM	Initial conceptual site model	VOC	Volatile organic compound				
LEL	Lower explosive limit	VRSC	Vibro-replacement stone columns				
LMRL	Lower method reporting limit	VSC	Vibro-stone columns				
LNAPL	Light non-aqueous phase liquid (petrol, diesel, kerosene)	WHO	World Health Organisation				
MCV	Moisture condition value	WRAP	Waste and Resources Action Programme				
MIBK	Methyl isobutyl ketone	WTE	Water table elevation				

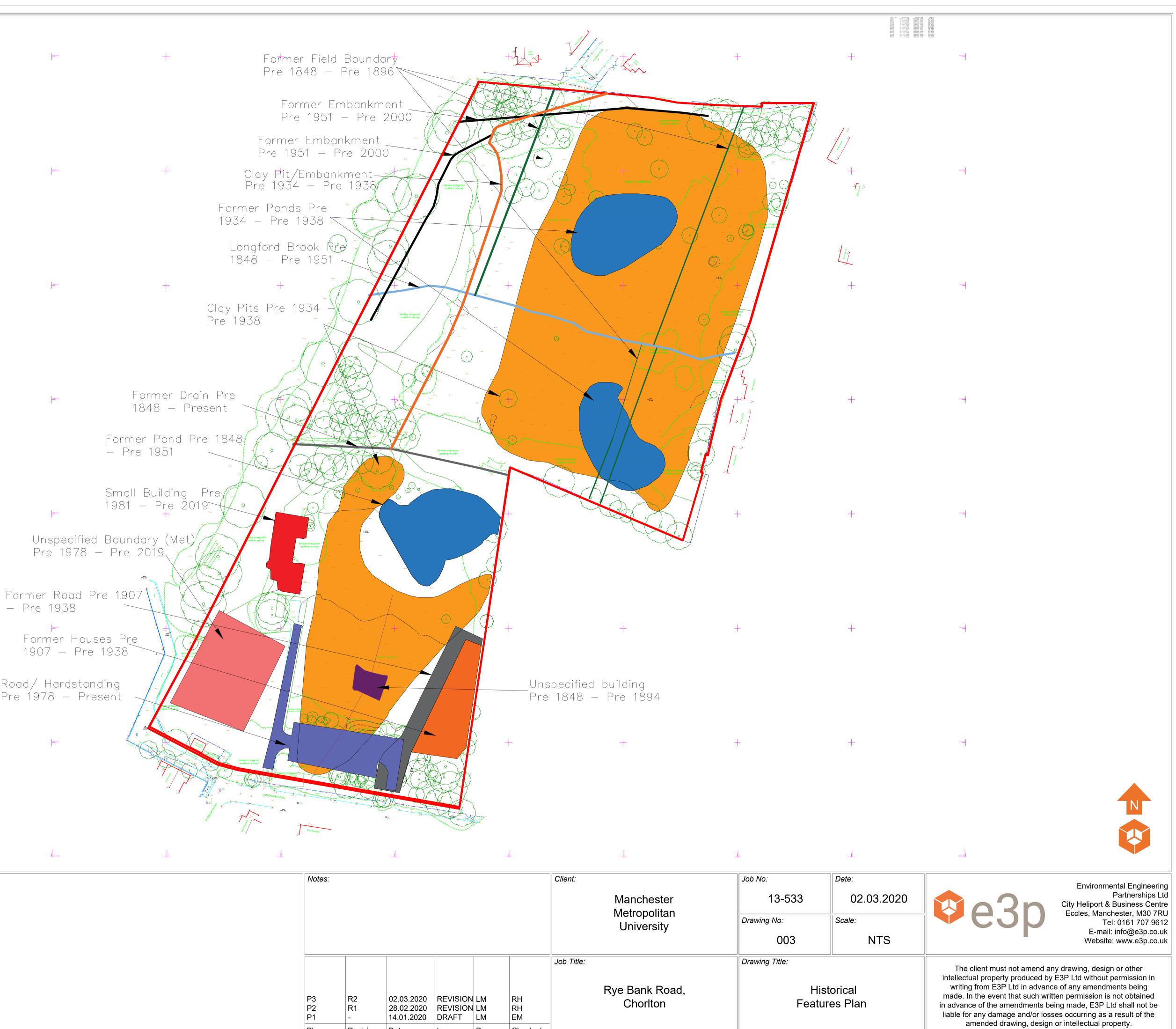


Ryebank Road Phase II Geoenvironmental Site Assessment March 2020

m	Metres	ppm	Parts per million				
km	Kilometres	mg/m ³	Milligram per metre cubed				
% v/v	Percent volume in air	m bgl bgl	Metres below ground level				
mb	Millibars (atmospheric pressure)	m bcl	Metre below cover level				
l/hr	Litres per hour	mAOD	Metres above ordnance datum (sea level)				
µg/l	Micrograms per litre (parts per billion)	kN/m ²	Kilonewtons per metre squared				
ppb	Parts per billion	μm	Micrometre				
mg/kg	Milligrams per kilogram (parts per million)	SSRT	Site Specific Remediation Target				
PSD	Particle Size Distribution	DD	Dry Density				
CL:AIRE	Contaminated Land: Applications in Real Environments	Мс	Moisture Content				
ρ	Bulk Density	GPR	Ground Penetrating Radar				
NDP	Nuclear Density Probe	FFL	Finished Floor Level				
LEL	Lower Explosive Limit	UKWIR	UK Water Industry Research				
CIRIA	Construction Industry Research and Information Association	LOD	Limit of Detection				

APPENDIX III DRAWINGS

DRAWING 13-533-001 - SITE LOCATION PLAN



Site Features	Notes:	Notes:					Client:	Job No:
Hardstanding Dry Ditch (Nico) Broadleaved woodland semi-natural Other tall herb and fern ruderal							Manchester	13-533
Dry Ditch Soil Bund							Metropolitan University	Drawing No:
Footpath Grassland								002
Sub Station Site Entrances			1	1		1		
Neutral Grassland semi-improved							Job Title:	Drawing Title:
Scrub - Dense/Continuous							Dvo Book Bood	Cita
Scattered Trees							Rye Bank Road, Chorlton	Site
Broadleaved Woodland Plantation	P1 P1	R1		REVISION DRAFT		BH BH	Chonton	
Footpath	Phase	Revision	Date			Checked		

Broadleaved Woodland Plantation

Date: Environmental Engineering Partnerships Ltd City Heliport & Business Centre Eccles, Manchester, M30 7RU Tel: 0161 707 9612 E-mail: info@e3p.co.uk Website: www.e3p.co.uk 02.03.2020 Scale: NTS The client must not amend any drawing, design or other intellectual property produced by E3P Ltd without permission in writing from E3P Ltd in advance of any amendments being made. In the event that such written permission is not obtained in advance of the amendments being made, E3P Ltd shall not be liable for any damage and/or losses occurring as a result of the amended drawing, design or intellectual property. Features Plan

– Pre 1938

Former Houses Pre 1907 – Pre 1938

Road/ Hardstanding Pre 1978 – Present

Historical Features

Small Building Pre 1981 - Pre 2019 Former Pond Pre 1848 - Pre 1951 / Pre 1934 - Pre 1938

Former Houses Pre 1907 - Pre 1938 Former Road Pre 1907 - Pre 1938

Unspecified Building Pre - 1848 - Pre 1894

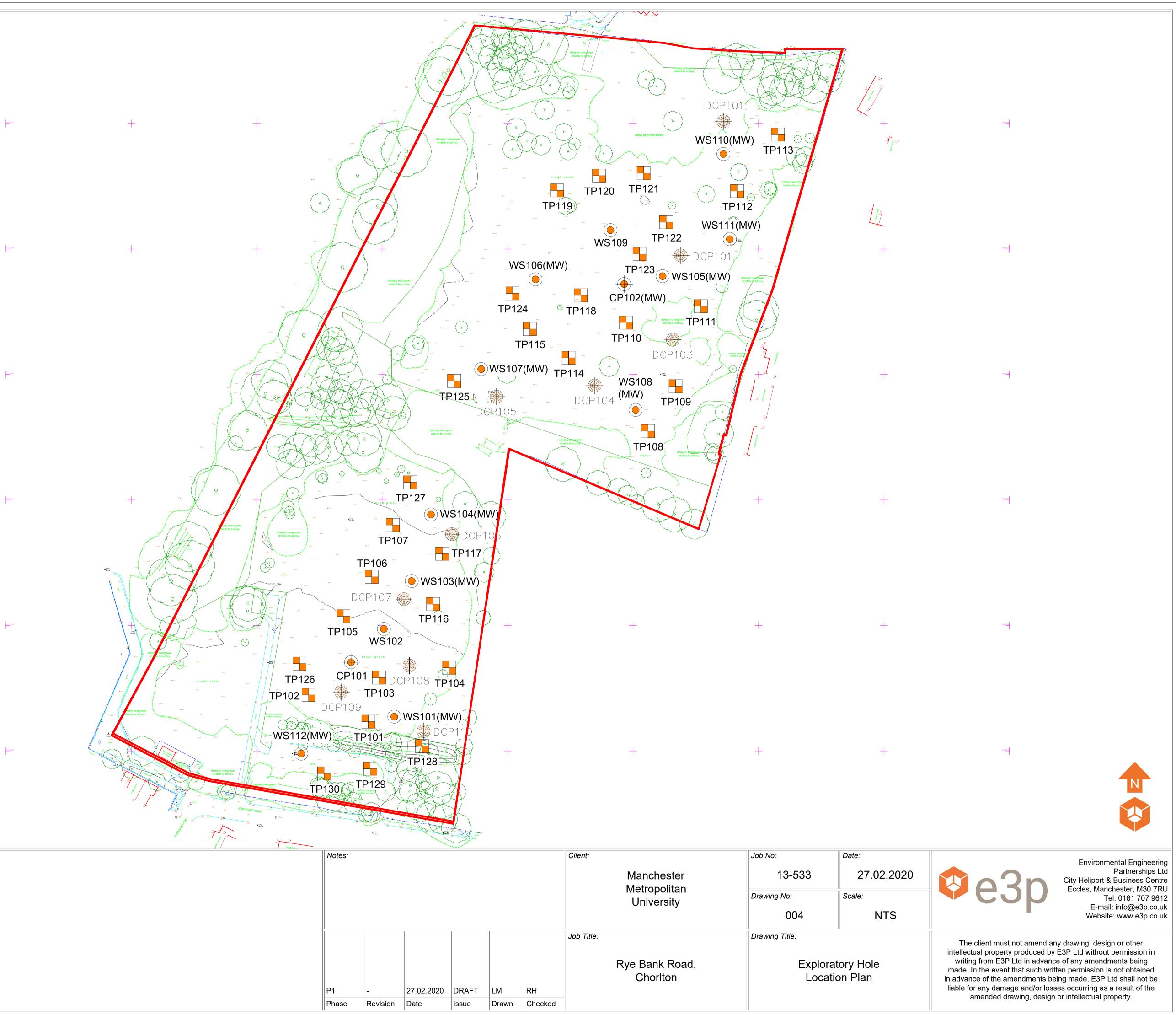
Unspecified Boundary (Met) Pre 1978 - Pre 2019

Former Clay Pits Pre 1934 - Pre 1938

Road/Hardstanding Pre 1978 - Present

Longford Brook Pre 1848 - Pre 1951

Former Field Boundary Pre 1848 - Pre 1896


Former Drain Pre 1848 - Present

Former Embankment Pre 1951 - Pre 2000

Former Clay pit/embankment Pre 1934 -Pre 1938

							University	
P3	R2	02.03.2020	REVISION	N LM	RH	Job Title:	e Bank Road, Chorlton	Drawii
P2 P1	R1 -	28.02.2020 14.01.2020	REVISION DRAFT	N LM LM	RH EM		Chomon	
Phase	Revision	Date	Issue	Drawn	Checked			

rsdd

Location Symbols

- Approximate Window Sample Probehole Location () WS101
- TP101 Approximate Trial Pit Location
- OP101 Approximate Cable Percussive Borehole Location
- 0CP101 Approximate Dynamic Cone Penetrometer Test Location
- Approximate Window Sample Probehole Location with Install

Notes:						Client:		Job No:
							Manchester	13-533
							Metropolitan University	Drawing No:
								004
						Job Title:		Drawing Title:
							Rye Bank Road, Chorlton	Explora Locat
P1	-	27.02.2020	DRAFT	LM	RH		Chornon	
Phase	Revision	Date	Issue	Drawn	Checked			

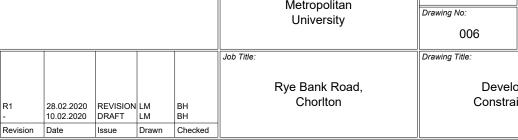
lssue

- () WS101(MW)
- TRIOI
- •
- DCP101

Small Building Pre 1981 - Pre 2019
Former Pond Pre 1848 - Pre 1951 / Pre 1934 - Pre 1938
Former Houses Pre 1907 - Pre 1938
Former Road Pre 1907 - Pre 1938
Unspecified Building Pre - 1848 - Pre 1894
Unspecified Boundary (Met) Pre 1978 - Pre 2019
Former Clay Pits Pre 1934 - Pre 1938

amended drawing, design or intellectual property.

P1


Phase

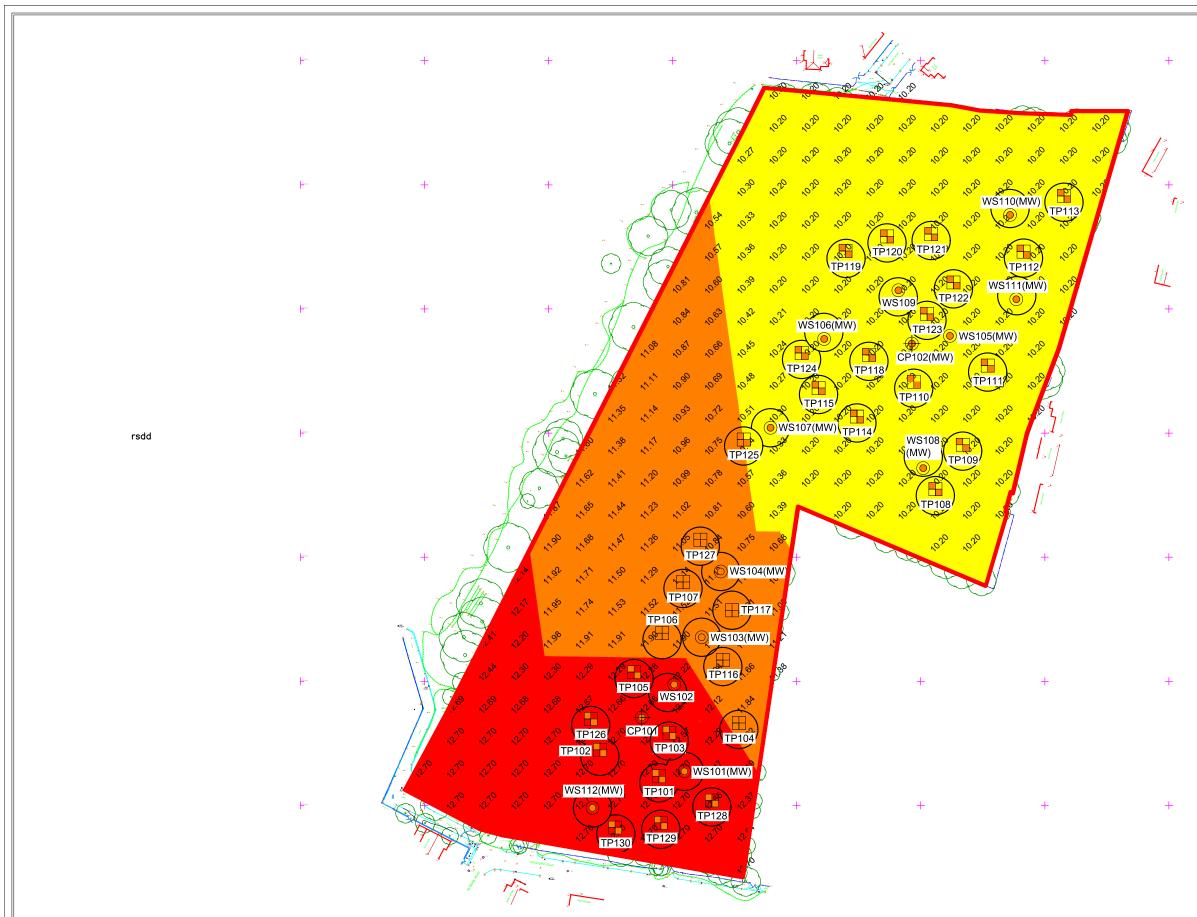
ct			

Other tall herb and fern ruderal

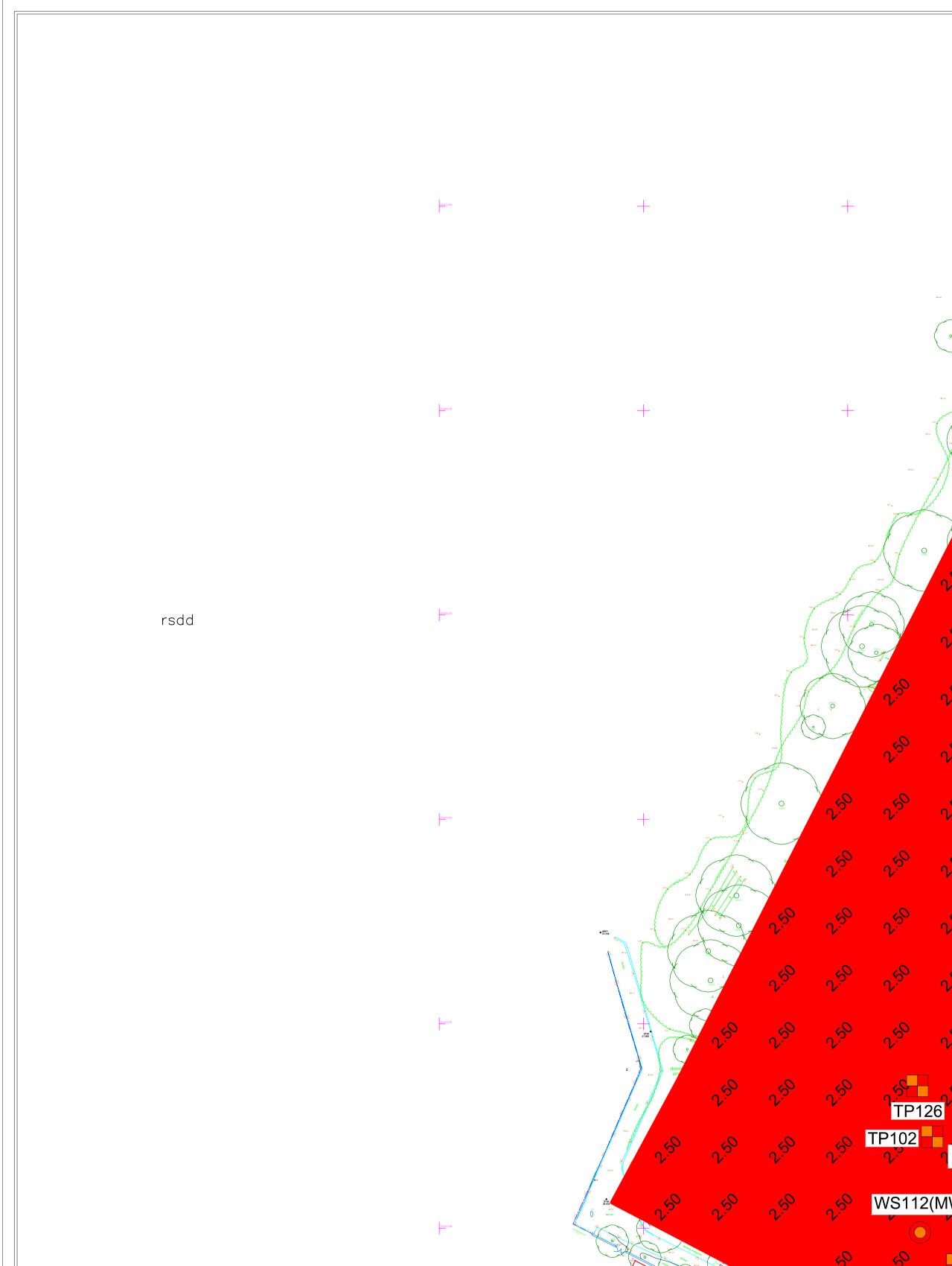
Area of Trees

Broadleaved Woodland Plantation

Broadleaved Woodland Plantation

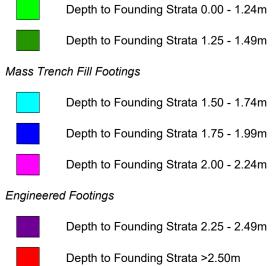

28.02.2020 NTS

Development **Constraints Plan**


Environmental Engineering Partnerships Ltd City Heliport & Business Centre Eccles, Manchester, M30 7RU Tel: 0161 707 9612 E-mail: info@e3p.co.uk Website: www.e3p.co.uk

The client must not amend any drawing, design or other intellectual property produced by E3P Ltd without permission in writing from E3P Ltd in advance of any amendments being made. In the event that such written permission is not obtained in advance of the amendments being made, E3P Ltd shall not be liable for any damage and/or losses occurring as a result of the amended drawing, design or intellectual property.

- 1		i i i i i i i i i i i i i i i i i i i												
	Location Symbols	Made Ground Depth ((m)			Notes:						Client:		Job No:
	Approximate Window Sample Probehole Location	Depth of M	Made Ground 0.00 - 1.49m	Full extent of Made Ground not identif	ied.							Manchester Metro	nolitan	13-533
	Approximate Window Sample Probehole Location with Install	Depth of M	Ade Ground 1.50 - 2.99m										politari	Description Max
	Approximate Trial Pit Location	Depth of M	Aade Ground 3.00 - 4.49m									University		Drawing No:
	Approximate Cable Percussive Borehole Location	Depth of M	Aade Ground 4.50 - 5.99m											007
		Depth of M	Ade Ground 6.00 - 7.49m									Job Title:		Drawing Title:
		Depth of M	/ade Ground 7.50 - 8.99m											
		Depth of M	/lade Ground 9.00 - 10.49m									Rye Bank Roa	ad.	Depth
		Depth of M	/lade Ground 10.50 - 11.99m			P2	R2	28.02.2020			RH	Chorlton	,	Grou
		Depth of M	/ade Ground >12.00m			P1	-			LM	EM			
						Phase	Revision	Date	Issue	Drawn	Checked			1


12 10 10 10 10 10 10 10 10 10 10 10 10 10		
-4		
-4		
-4		
-4		
-		
-4		
Date: 28.02.2020	Environmental Engineering Partnerships Ltd City Heliport & Business Centre Eccles, Manchester, M30 7RU Tel: 0161 707 9612	
Scale: NTS	Tel: 0161 707 9612 E-mail: info@e3p.co.uk Website: www.e3p.co.uk	
oth to Made ound Plan	The client must not amend any drawing, design or other intellectual property produced by E3P Ltd without permission in writing from E3P Ltd in advance of any amendments being made. In the event that such written permission is not obtained in advance of the amendments being made, E3P Ltd shall not be liable for any damage and/or losses occurring as a result of the amended drawing, design or intellectual property.	

Location Symbols

- Approximate Window Sample Probehole Location
- Approximate Window Sample Probehole Location with Install
- Approximate Trial Pit Location
- Approximate Cable Percussive Borehole Location

Shallow Spread Footings

											>				
				*843	and the second s	2,50	<u>ک</u> .	20	V.	50					
					15 2.50	2 ⁵⁰	2.50	2.50	2. 5.	2.50	250	22	2.50	15. 2	2,50
					250	24.00	250	25. 2	250	250	2.50		101 8	24.00	250
				25.	2,50	2 ²	2.50 2.	2.50	25.00	250	250	WS110	D(MŴ)	TP113	245
	•***			21. 21.	2,50	2 ² 50	250	2.50	<mark>م</mark> TP120	رب TP12	2.50	15. 2	100 24	2×50.	
	9. Ma	K	° 2,50	2 ^{50,}	2×50	2 ⁵⁰	250 T	「P119」 ~	2.50	250	250 24		TP112 7. 11(MW)	250	
	-		2,50	2,50	2,50	2 ⁵⁰	2 ⁵⁰		WS1	09 🔗	TP122	<mark>رہ</mark> ې (DCP1C	ૼૢૢૢૢૢ	2,55	
*827		° 2.50	2,50	24. 24		250		250		TP123	1 V	05(MW) ₂₅₀		
Ī		2.50	2,50	21. 21.	2,50	TP' کې	124	、 TP1 ン・	18 450	- 2.50		P111	2.50		
	250	250	25.	2,50	2.50	າ ^{,50} WS1	TP115 [、]	TP114	250	P110	@ DCP103	2.50	2.55		
	22.00	250	15. 2	2.50	<mark>ہے۔</mark> 19125	3	2.50	2.50		WS108 (MW)	7. TP109	24. 24			
250	25.00	250	24.00	20. 21.	1P125	0CP105 رې	5 2.50	250	2.50 2		2.50	250			
250	25.0	2.50	2,50	2 ¹⁵⁰	2,50	2 ⁵⁰		2,50	250	TP1 v ^{sv}	08 2 ⁵⁵	2.50			
250	250	250	ィッ ン [・] TP	127 127		2 ⁵⁵ +				2.	2.50	24,5	+	_	
25.0	2×100	250	TP107	1,0		210 <mark>5</mark>									
5. 2	25.0	₁ ^{TP′}	106 ⁵⁹	رہی۔ WS1	TP117 رې 03(MW)										
2.50	22.00		107	2	2 CP.										
250	T <mark>رک</mark>	P105	<u>,</u> s ₩S102	TP11 2 ⁵⁰	22 CS.	+				+			+	-	
n <mark>ss TP12</mark>	26 26	CP101	ېږې DCF P103	€ <mark>∕ ب%</mark> 108 <mark>⊺ا</mark>	P104										
P102 イ ^ジ		P109	ک ^ر . ا	رب ^ی VS101(I	MW)										
VS112	2(MW)	TP1	01 ₀ ,50	TP128		+				+			+	_	
2.50	م ایز TP13	0 0 0 0 0 0	29 ^{1,50}	TP128 _ໃ ງ່າ											
And	ни		Para and a second	A.		n 2 ¹⁰									
		Notes:						C	lient:				•	Job No:	
											nchester ropolitar				-533
											iversity			Drawing No C) 08
									ob Title:					Drawing Titl	

P2

P1

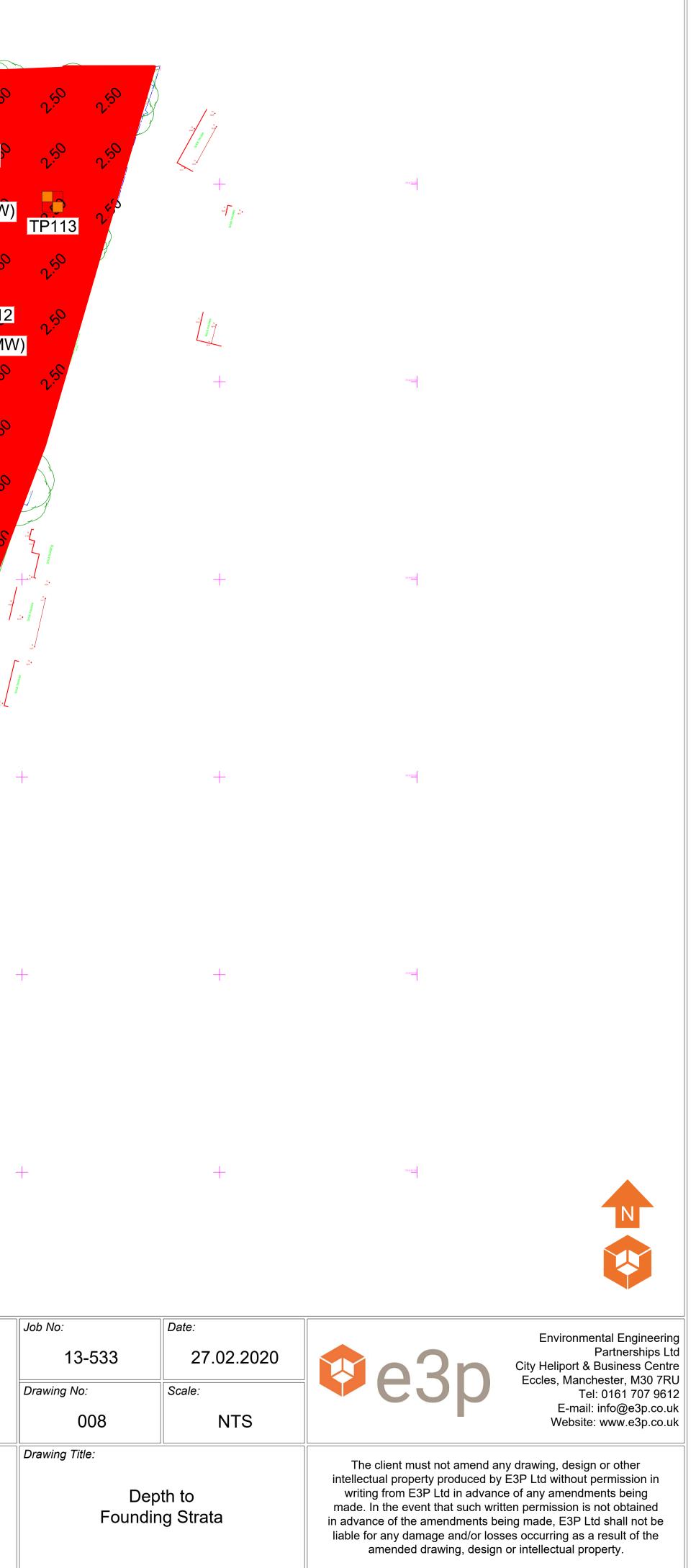
Phase

R1

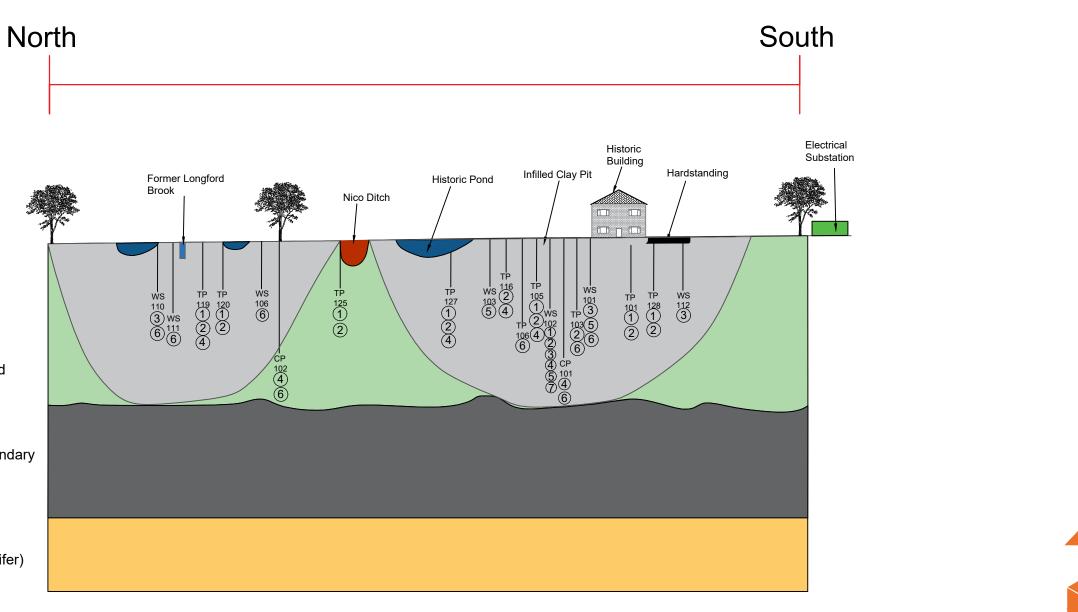
Revision Date

27.02.2020 REVISION LM

07.01.2019 DRAFT LM


Issue

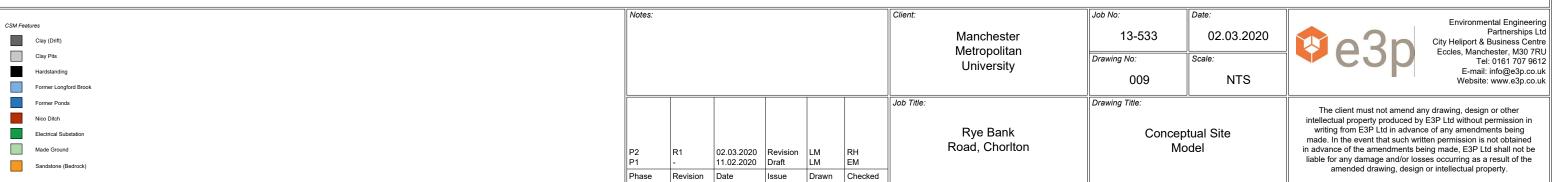
EM

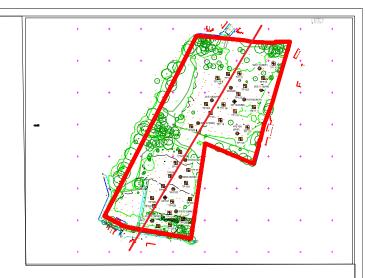

EM

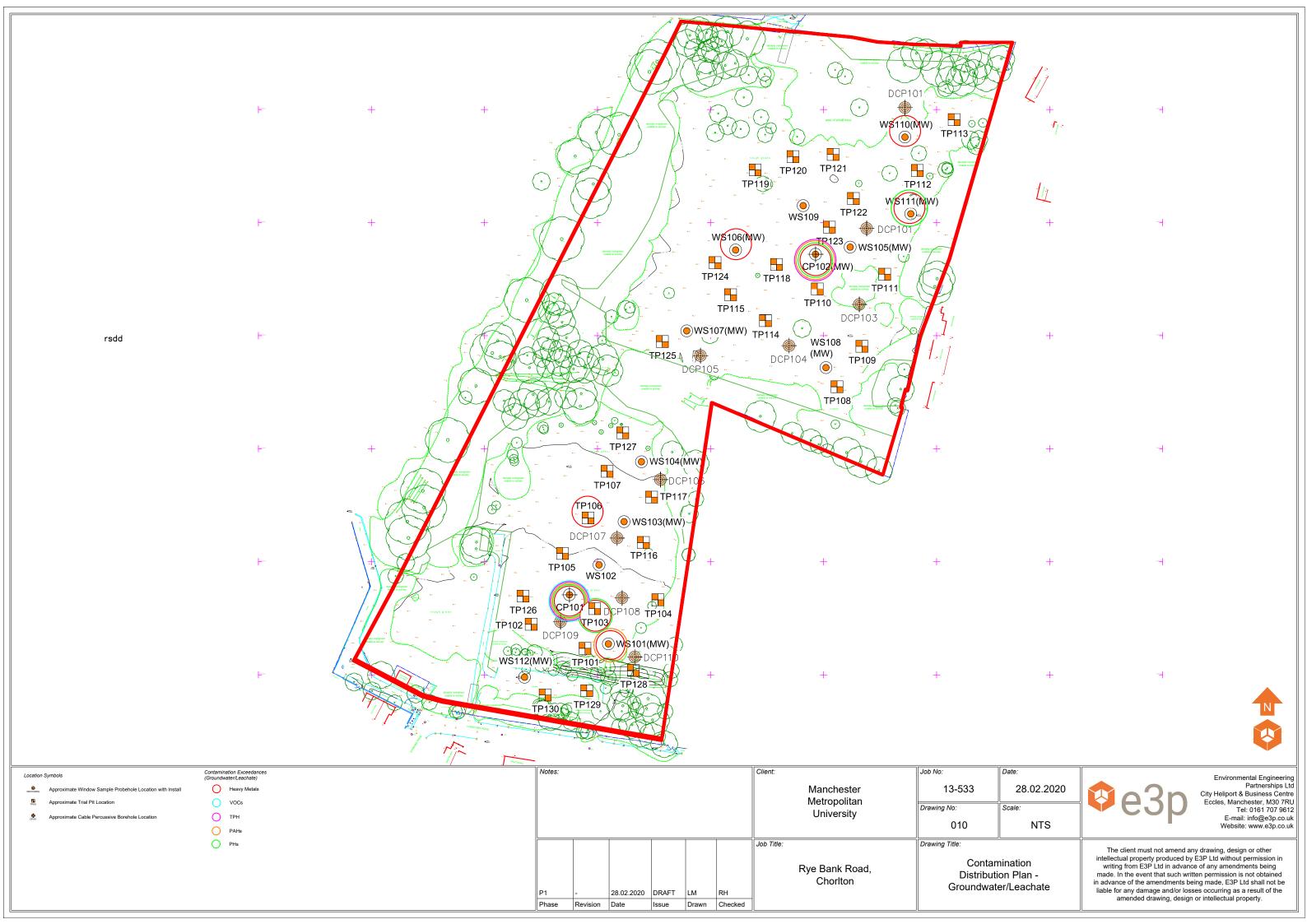
Drawn Checked

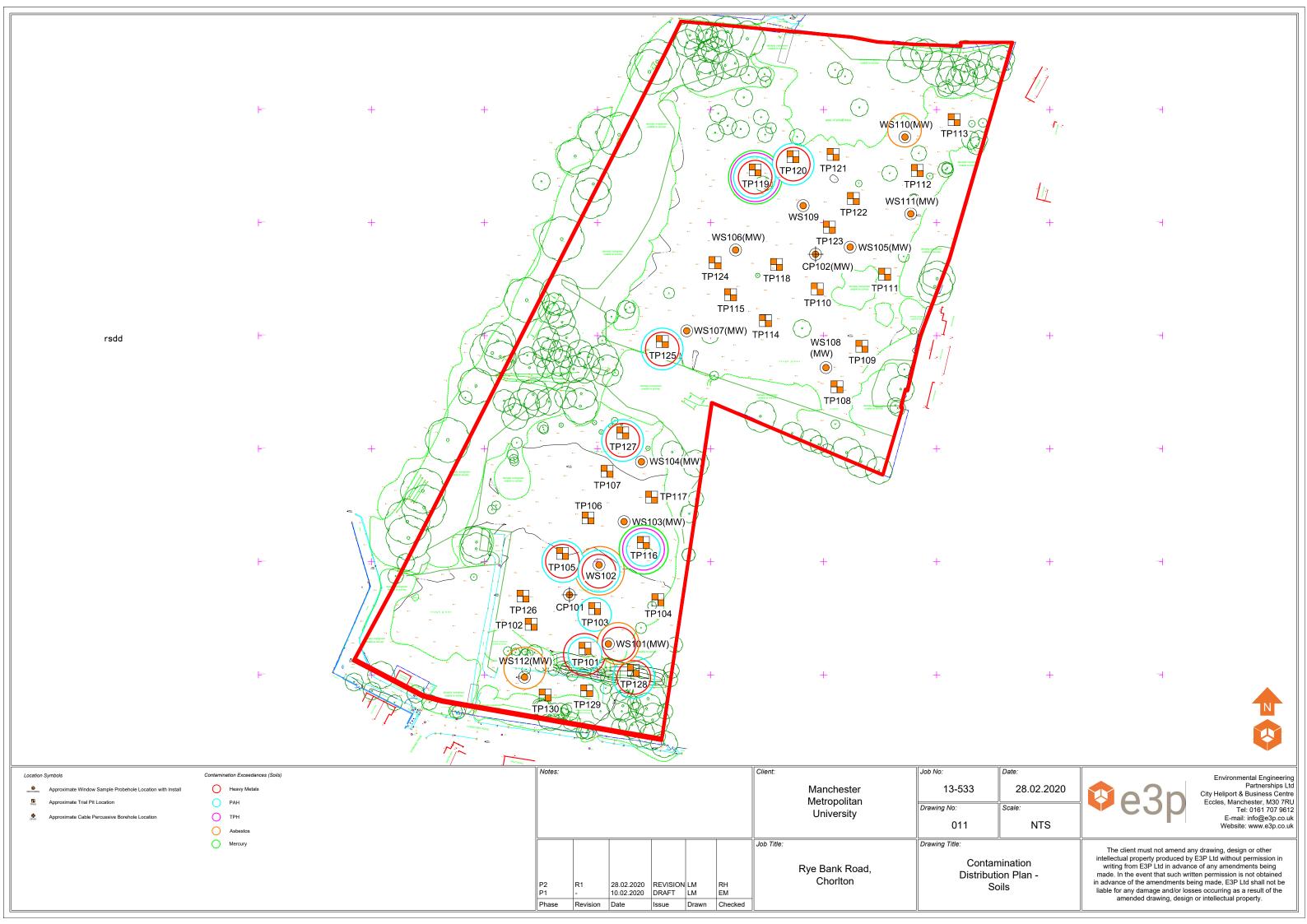
Rye Bank Road, Chorlton

ID	SOURCE	POTENTIAL PATHWAY	RECEPTOR
PL1	Soil Ingestion	Future site users. Offsite receptors.	Heavy metals (in Made Ground).
PL2	Dermal Contact & Ingestion	Future site users. Off-site receptors.	None Volatile PAH/TPHs compounds (in Made Ground).
PL3	ACM in MADE GROUND	Inhalation of dust.	Future site users. Buildings. Off-site land users.
PL4	Inhalation of vapours. Migration through permeable strata and preferential pathways.	Future site users. Offsite receptors.	Volatile Contaminants such as naphthalene, mercury and volatile: TPHs (Made Ground)
PL5	Methane, carbon dioxide (Infilled features on and within 250 m of the site)	Inhalation of gas. Migration through permeable strata and preferential pathways. Explosion in confined spaces.	Future site users. Buildings. Off-site land users
PL6	Mobile contaminants such as metals, PAHs, hydrocarbons, volatile compounds (MADE GROUND, infilled pond and clay pit)	Surface runoff. Migration through permeable strata and preferential pathways. Perched waters migration.	Groundwater (Principal aquifer). Surface water (Longford Brook).
PL7	Sulphate (potential ash within MADE GROUND)	Sulphate attack on concrete.	Building structure
PL8	Organic contaminants such as hydrocarbons, solvents (MADE GROUND, scrap yards, mills and works)	Ingestion of tainted water supply.	Future site users. Water pipes.




Made Ground


Drift


Clay (Undifferentiated and Secondary A aquifer)

> Bedrock: Sandstone (Principal aquifer)

APPENDIX IV PHOTOGRAPHS

Ryebank Road Phase II Geoenvironmental Site Assessment March 2020

Ryebank Road Phase II Geoenvironmental Site Assessment March 2020

Ryebank Road Phase II Geoenvironmental Site Assessment March 2020

Ryebank Road Phase II Geoenvironmental Site Assessment March 2020

APPENDIX V E3P EXPLORATORY HOLE LOGS

)n				т.		TrialPit	
	63	Ph				Ir	ial Pit Log	TP10 Sheet 1	
Name.	Rye Bank R	Road		Proje 13533	ct No. 3		Co-ords: - Level: Dimensions 2.20	Date 03/12/20 Scale)19
Location:	Chorlton							1:30	
Client:							Depth o	Logge E.Mos	d s
Water Strike	Sampl	les & In Si	tu Testing	Depth	Level	Legend	Stratum Description		
St &	Depth	Туре	Results	(m)	(m)		MADE GROUND: Brown slightly sandy gravel v		
1.90	0.10	ES		2.40			End of Pit at 2.40m	orked o sub- d brick. 	23

Trial Pit Photographs

Trial Pit 101

Trial Pit 101 Spoil

©e3p

Remarks: 1.Terminated at 2.40m bgl due to rapid groundwater ingress. 2.Rapid groundwater strike at 1.90m bgl. 3.Excavation slow due to cobbles within Made Ground. 4. Hydrocarbon odour within Made Ground.

	e3	<u>R</u>				Tr	ial Pit Log	TrialPit TP10	
		γ				••		Sheet 1	of 1
Project	Rye Bank F	Pood		Proje	ct No.		Co-ords: -	Date	
Name:		loau		13533	13533		Level:	03/12/20)19
Locatio	n: Chorlton						Dimensions 2.20 (m):	Scale 1:30	;
Olivert	N		- 114 1 1 1 14				(m): 0 Depth 0	Logge	d
Client:		-	olitan University	/			2.30	E.Mos	S
Water Strike	•	les & In Si		Depth	Level	Legend	Stratum Description		
≥∞	Depth	Туре	Results	(m)	(m)				
2.10	0.10	ES		0.20 1.50 1.60 2.30			MADE GROUND: Brown sandy gravel with freq rootlets (Reworked Topsoil). Gravel Is fine to co sub-angular to sub-rounded of concrete and brit MADE GROUND: Brown sandy, clayey gravel (with occasional cobbles and rare boulders. Grav fine to coarse, sub-angular to sub-rounded of as sandstone, concrete and brick. Cobbles are sub angular of concrete. Boulders are sub-angular of concrete. MADE GROUND: Brown fine to medium sand. MADE GROUND: Brown gravely clay. Gravel is coarse, sub-angular to sub-rounded of asphalt a concrete. (Reworked clay) End of Pit at 2.30m	carse, ck. ashy) vel is sh, o- of	2 3 4

Trial Pit Photographs

Trial Pit 102

Trial Pit 102 Spoil Remarks: 1.Terminated at 2.30m bgl due to rapid groundwater ingress. 2.Rapid groundwater strike at 2.10m bgl.

Stability: Stable

	e	<u>Sp</u>				Tr	ial Pit Log	TrialPit N TP103 Sheet 1 c	3
Project	Rye Bank F	Road		Proje	ct No.		Co-ords: -	Date	
Name:				13533	3		Level:	03/12/20	
Locatior	n: Chorlton						Dimensions 2.30 (m): o	Scale 1:30	
Client:	Mancheste	r Metropo	olitan Universit	у			(m): 6 Depth 6 2.40	Logged E.Moss	
Water Strike	Samp	oles & In Site	u Testing	Depth	Level	Legend			
Wa Str	Depth	Туре	Results	(m)	(m)	Legenu			
	1.30 1.50	ES B		0.30			MADE GROUND: Brown sandy gravel with free cobbles and rootlets (Reworked Topsoil). Grav to coarse, sub-angular to sub-rounded of sand mudstone, concrete and brick. MADE GROUND: Brown slightly sandy clayey with frequent cobbles and occasional boulders is fine to coarse sub-angular to sub-rounded of sandstone, mudstone, concrete, metal, plastic timber. Cobbles are sub-angular of brick and of Boulders are sub-angular of concrete. MADE GROUND: Black gravelly medium to co sand (ash) with frequent cobbles. Gravel is fin coarse sub-angular to sub-rounded of concret timber, ash and brick. Cobbles are sub-angular concrete, glass, timber and brick.	rel is fine Istone, gravel s. Gravel of and concrete.	1 -
2.10	2.10 2.20	ES ES		2.10 2.40			MADE GROUND: Soft blue grey clayey mediu (ash). End of Pit at 2.40m	Im sand	2 -
									3 -

Trial Pit Photographs

Trial Pit 103

Trial Pit 103 Spoil Remarks: 1.Terminated at 2.40m bgl due to rapid groundwater ingress. 2.Rapid groundwater strike at 2.10m bgl.

Stability: Unstable in northern elevation of trial pit at 1.00m bgl.

						T		TrialPit	
	e:	50				Ir	ial Pit Log	TP10	
				Droie	ct No.		Co-ords: -	Sheet 1 Date	
Project Name:	Rye Bank F	₹oad		13533			Level:	03/12/20	
	n: Chorlton				, 		Dimensions 2.20	Scale	;
Location							(m): Q	1:30	
Client:	Manchester	r Metropol	litan University				Depth o	Logge E.Mos	d s
Water Strike	Samp	les & In Situ	Testing	Depth	Level	Legend	Stratum Description		
s ti ti ≤	Depth	Туре	Results	(m)	(m)				
2.10	0.80	ES		0.20			MADE GROUND: Brown slightly sandy grave occasional cobbles and frequent rootlets (Rev Topsoil). Gravel is fine to coarse, sub-angular rounded of sandstone, mudstone, concrete and bric MADE GROUND: Brown sandy, clayey grave with occasional cobbles and rare boulders. Gr fine to coarse, sub-angular to sub-rounded of sandstone, plastic, wood, concrete and brick. are sub-angular of concrete. Boulders are sub of concrete.	vorked to sub- nd brick. (ashy) ravel is ash, Cobbles	2 3 4
				Trial	Pit P	hoto	graphs		
						at the second seco			

Stability: Stable

Trial Pit 104

Remarks: 1.Terminated at 2.10m bgl due to rapid groundwater ingress. 2.Rapid groundwater strike at 2.10m bgl.

Trial Pit 104 Spoil

	e3	3p)			Tr	ial Pit Log	TrialPit I TP10 Sheet 1 d	5
Project	Rye Bank R	e ad			ct No.		Co-ords: -	Date	
Name:		louu		13533	3		Level:	03/12/20	
Locatio	n: Chorlton						Dimensions 2.20 (m):	Scale 1:30	
Client:	Manchester	Metrop	olitan University				(m): 0 Depth 0 2.20	Logged E.Moss	b
er (e	Sampl	les & In S	Situ Testing	Depth	Level			E.MOS	5
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
2.20	0.10	ES		0.30			MADE GROUND: Brown slightly sandy gravel w occasional cobbles and frequent rootlets (Rewo Topsoil). Gravel is fine to coarse, sub-angular to rounded of sandstone, mudstone, concrete and Cobbles are sub-angular of concrete and brick. MADE GROUND: Black gravel (ashy) with frequ cobbles and occasional boulders. Gravel is fine coarse, sub-angular to sub-rounded of sandstor mudstone, concrete, ash and brick. Cobbles are angular of concrete and brick. Boulders are sub- angular of concrete. End of Pit at 2.20m	rked sub- brick. lent to le, sub-	
			-	Trial	Pit P	hoto	graphs		
Permeri	A: 1 Tormiant		al Pit 105				Trial Pit 105 Spoil 2.Rapid groundwater strike at 2.20m bgl.		

Stability: Stable

©e3p

K	e3	3p)			Tr	ial Pit Log	TrialPit No TP106 Sheet 1 of 1
Project		Poad		Proje	ct No.		Co-ords: -	Date
Name:		Koad		1353	3		Level:	03/12/2019
Locatio	on: Chorlton						Dimensions 2.20 (m):	Scale 1:30
Client:	[oolitan University		1	1	(m): Depth o 1.70	Logged E.Moss
Water Strike	Samp Depth	les & In S	Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	
1.60	1.50	ES		0.20 0.30			MADE GROUND: Brown slightly sandy gravel v occasional cobbles and frequent rootlets (Rewo Topsoil). Gravel is fine to coarse, sub-angular to rounded of sandstone, mudstone, concrete and Cobbles are sub-angular of concrete and brick. MADE GROUND: Brown gravel. Gravel is coar angular of concrete and limestone. MADE GROUND: Black gravel (ashy) with freq cobbles and occasional boulders. Gravel is fine coarse, sub-angular to sub-rounded of sandsto mudstone, timber, ash, concrete and brick. Cot are sub-angular of concrete. Boulders sub-angular of concrete.	orked o sub- d brick. se, sub- uent o to ne, obles
				- • •		 		4 -
		Contraction of the local division of the loc		rial	PIT P	noto	graphs	

Trial Pit 106

Trial Pit 106 Spoil Remarks: 1.Terminated at 1.70m bgl due to rapid groundwater ingress. 2.Rapid groundwater strike at 1.60m bgl.

🛛 еЗр

Stability: Stable

								TrialPit No
	e:	٢r				Tr	ial Pit Log	TP107
								Sheet 1 of 1
Project	Rye Bank F	Road		Projec			Co-ords: -	Date
Name:	-			13533	3		Level: Dimensions 2.00	04/12/2019 Scale
Locatio	n: Chorlton						(m): 00	1:30
Client:	Manchester	r Metrop	oolitan University				Depth o	Logged E.Moss
Water Strike	Samp	les & In S	Situ Testing	Depth	Level	Legend	Stratum Description	
Str	Depth	Туре	Results	(m)	(m)	- Legend		
2.30	1.80	ES		0.30			MADE GROUND: Brown sandy gravel with free cobbles. (Reworked Topsoil). Gravel is fine to c sub-angular to sub-rounded of concrete, aspha and sandstone. Cobbles are sub-angular of cor brick and sandstone. MADE GROUND: Black gravelly medium to cor- sand (ashy) with frequent cobbles and boulders Gravel is fine to coarse, sub-angular to sub-rou concrete, asphalt, ash and brick. Cobbles are s angular of sandstone, brick and concrete. Bou are sub-angular of concrete.	inded of
			Т	rial	Pit P	hoto	graphs	
Remark	(s; 1.Terminat		al Pit 107				Trial Pit 107 Spoil 2.Rapid groundwater strike at 2.30m bgl.	
Remark Stability		ed at 2	.40m bgl due to rapi	d grour	ndwater	ingress.	2.Rapid groundwater strike at 2.30m bgl.	₿е3р

	ea	3p				Tr	ial Pit Log	TrialPit No TP108 Sheet 1 of 1
Project Name:	Rye Bank F	Road			ect No.		Co-ords: -	Date 04/12/2019
	n: Chorlton			1353	3		Level:	Scale
							(m): 00 00 00 00 00 00 00 00 00 00 00 00 00	1:30 Logged
Client:			oolitan University	1				E.Moss
Water Strike	Samp Depth	oles & In Si Type	itu Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	
2.20	1.00	BES		0.20 2.20			MADE GROUND: Brown sandy gravel with freque cobbles. (Reworked Topsoil). Gravel is fine to coa sub-angular to sub-rounded of concrete, asphalt, and sandstone. Cobbles are sub-angular of concr MADE GROUND: Black gravelly medium to coars sand (ashy) with frequent cobbles and boulders. Gravel is fine to coarse, sub-angular to sub-round concrete, ash, copper, asphalt and brick. Cobbles sub-angular of sandstone, brick and concrete. Boulders are sub-angular of concrete. Boulders are sub-angular of concrete. Boulders are sub-angular of concrete.	arse, brick rete, se
* 20150		AND STATES		mai			ographs	

Trial Pit 108

F / AN F C

Trial Pit 108 Spoil

🛛 еЗр

Remarks: 1.Terminated at 2.20m bgl due to rapid groundwater ingress. 2.Rapid groundwater strike at 2.20m bgl.

172

	ea	3p				Tr	ial Pit Log	TrialPit TP10 Sheet 1	9
Project Name:	Rye Bank F	Road		Proje 1353	ct No. 3		Co-ords: - Level:	Date 04/12/20	
Locatio	n: Chorlton			I			Dimensions 2.20 (m):	Scale 1:30	
Client:	Mancheste	r Metrop	olitan University	,	L		(m): Depth 0 2.20	Logge E.Mos	d s
Water Strike	Samp	les & In Sit	tu Testing	Depth	Level	Legend	Stratum Description		
Str	Depth	Туре	Results	(m)	(m)	Legend			
2.00	0.10	ES		0.30			MADE GROUND: Brown sandy gravel with free cobbles. (Reworked Topsoil). Gravel is fine to o sub-angular to sub-rounded of concrete, aspha and sandstone. Cobbles are sub-angular of co brick and sandstone. MADE GROUND: Black gravelly medium to co sand (ashy) with frequent cobbles. Gravel is fin coarse, sub-angular to sub-rounded of concret rebar, asphalt, rare glass and brick. Cobbles ar angular of sandstone, brick and concrete. End of Pit at 2.20m	coarse, alt, brick pricrete, parse ne to te, ash,	2

Trial Pit 109

Trial Pit 109 Spoil

🛛 еЗр

Remarks: 1.Terminated at 2.20m bgl due to rapid groundwater ingress. 2.Rapid groundwater strike at 2.00m bgl. 3.Excavation slow due to compact Made Ground.

Stability: Stable

	e	<u>Sp</u>				Tr	ial Pit Log	TrialPit TP11	0
				Droio	ct No.		Co-ords: -	Sheet 1	
Project Name:	Rye Bank F	Road		1353			Level:	Date 04/12/20	
	n: Chorlton						Dimensions 2.20	Scale	;
LUCALIO							(m): Depth o	1:30	
Client:	Mancheste	r Metropo	litan University	y	1		Depth 0	Logge E.Mos	
Water Strike	Samp	oles & In Situ	I Testing	Depth	Level	Legend	Stratum Description		
≥∞	Depth	Туре	Results	(m)	(m)		MADE GROUND: Brown sandy gravel with free	quent	_
2.10				0.30			cobbles. (Reworked Topsoil). Ġrāvel is fine to da sub-angular to sub-rounded of concrete, aspha and sandstone. Cobbles are sub-angular of cobrick and sandstone. MADE GROUND: Black gravelly medium to cosand (ashy) with frequent cobbles and boulder Gravel is fine to coarse, sub-angular to sub-rou concrete, asphalt, ash and brick. Cobbles are sangular of sandstone, brick and concrete. Bou are sub-angular of concrete. Boundary of concrete. End of Pit at 2.20m	alt, brick ncrete, parse s. unded of sub-	

Trial Pit 110

Trial Pit 110 Spoil

Remarks: 1.Terminated due to continued collapse at 0.80m bgl. 2.Rapid Groundwater strike at 2.10m bgl

¢	ea	3p)			Tr	ial Pit Log	TrialPit TP11 Sheet 1	1
Project Name:	Rye Bank F				ct No.		Co-ords: -	Date	
	n: Chorlton			1353	3		Level: Dimensions 2.20 (m): o	04/12/20 Scale 1:30	;
Client:	Manchester	Metrop	olitan University				(m): Depth 0 1.80	Logge E.Mos	d
Water Strike	Samp	les & In S	itu Testing	Depth	Level	Legend	Stratum Description		
Str	Depth	Туре	Results	(m)	(m)	Legenu	Stratum Description		
	1.20	ES		0.30			MADE GROUND: Brown sandy gravel with free cobbles. (Reworked Topsoil). Gravel is fine to c sub-angular to sub-rounded of concrete, asphal and sandstone. Cobbles are sub-angular of cot brick and sandstone. MADE GROUND: Black gravelly medium to co sand (ashy) with frequent cobbles and boulder: Gravel is fine to coarse, sub-angular to sub-rou concrete, asphalt, ash and brick. Cobbles are s angular of sandstone, brick and concrete. Bou are sub-angular of concrete. (Soft blue, grey cl medium sand (White ash) in east at 1.20m bgl. End of Pit at 1.80m	coarse, lt, brick ncrete, arse s. Inded of sub- Iders ayey	2 -

Trial Pit 111 Remarks: 1.Terminated due to continued collapse at 1.80m bgl.

Trial Pit 111 Spoil

	e3	3p				Tr	ial Pit Log	TrialPit TP11 Sheet 1	2
Project Name:	Rye Bank F	Road		Proje 1353	ct No. 3		Co-ords: - Level:	Date 04/12/20	
Locatio	n: Chorlton						Dimensions 2.20 (m): o	Scale 1:30	1
Client:	Mancheste	r Metropo	olitan University				(m): Depth o 1.90	Logge E.Mos	
Water Strike	Samp	les & In Sit	u Testing	Depth (m)	Level (m)	Legend	Stratum Description		
> 00	Depth 0.10 1.50	Type ES ES	Results	0.10 0.20			MADE GROUND: Brown slightly sandy gravel occasional cobbles and frequent rootlets (Rew Topsoil). Gravel is fine to coarse, sub-angular to rounded of sandstone, mudstone, concrete and Cobbles are sub-angular of concrete and brick. MADE GROUND: Brown gravel. Gravel is fine coarse, sub-angular to sub-rounded of concrete MADE GROUND: Black gravelly medium to co- sand (ashy) with frequent cobbles and boulders Gravel is fine to coarse, sub-angular to sub-rou concrete, asphalt, ash, rebar and brick. Cobble sub-angular of sandstone, brick and concrete. Boulders are sub-angular of concrete.	orked o sub- d brick. to e. arse s. inded of	1
									3

Trial Pit 112

Remarks: 1.Terminated due to continued collapse at 1.90m bgl.

Trial Pit 112 Spoil

	e3	3p				Tr	ial Pit Log	TrialPit I TP11 Sheet 1 o	3
Project	Rye Bank F	Deed		Proje	ct No.		Co-ords: -	Date	51 1
Name:	куе Балк н	toau		13533	3		Level:	04/12/20	
Locatio	n: Chorlton						Dimensions 2.20 (m): o	Scale 1:30	
Client:	Manchester	⁻ Metrop	olitan University			1	(m): Depth 0 2.00	Logged E.Moss	
Water Strike	Samp	les & In S	itu Testing	Depth	Level	Legend	Stratum Description		
St.	Depth	Туре	Results	(m)	(m)	Logona			
1.80	1.50	ES		2.00			MADE GROUND: Brown sandy gravel with free cobbles. (Reworked Topsoil). Gravel is fine to c sub-angular to sub-rounded of concrete, aspha and sandstone. Cobbles are sub-angular of cor brick and sandstone. MADE GROUND: Black red sandy gravel (ashy frequent cobbles. Gravel is fine to coarse, sub- to sub-rounded of asphalt, brick, ash, rebar an concrete. Cobbles are sub-angular to sub-round brick and concrete. Boulders are sub-angular to sub- rounded of brick and concrete. (Soft grey blue medium sand with ash in southern elevation be 1.10m and 1.50m bgl) End of Pit at 2.00m	boarse, alt, brick ncrete, y) with angular ad ded of of b- clayey	2

Remarks: 1.Terminated at 2.00m bgl due to collapse. 2.Rapid groundwater strike at 1.80m bgl. 3.Excavation slow due to cobbles within Made Ground. 4. Large concrete and brick obstructions within strata at 0.40m and 0.30m bgl. Stability: Unstable

©еЗр

								TrialPit N	٩٨
	e3	sn				Tr	ial Pit Log	TP114	4
								Sheet 1 c	of 1
Project	Rye Bank F	Road			ct No.		Co-ords: -	Date	
Name:				13533	3		Level: Dimensions 2.20	04/12/20 Scale	
Locatio	n: Chorlton							1:24	
Client:	Manchester	r Metrop	oolitan University				(m): Depth o 2.30	Logged E.Moss	1
Water Strike	Samp	les & In S	itu Testing	Depth	Level	Legend	Stratum Description		
Wa Str	Depth	Туре	Results	(m)	(m)	Legenu			
2.20	<pre><s: 1.complet<="" pre=""></s:></pre>	e. 2.Ra	bid groundwater stril	0.30 0.50 2.30	.20m bg		MADE GROUND: Brown sandy gravel with free cobbles. (Reworked Topsoil). Gravel is fine to cusb-angular to sub-rounded of concrete, asphat and sandstone. Cobbles are sub-angular to concrete. MADE GROUND: Brown gravel. Gravel is fine to coarse, sub-angular to sub-rounded of concrete gravel is fine to coarse, sub-angular to sub-rounded of concrete. Gravel is fine to coarse, sub-angular to sub-rounded of concrete. Boul are sub-angular of sandstone, brick and concrete. Boul are sub-angular of concrete. End of Pit at 2.30m	oarse, It, brick herete, to e. arse s. inded of ub-	1
Stability	y: Unstable							♥e(Зр

								TrialPit	No
	e:	5 C				Tr	ial Pit Log	TP11	
							_	Sheet 1	
Project Name:		Road		Project 13533			Co-ords: - Level:	Date 04/12/20	
	on: Chorlton			10000	5		Dimensions 2.20	Scale	
							(m): Depth o	1:24 Logge	d
Client:			oolitan University			1	2.20	E.Mos	
Water Strike	Depth	Type	itu Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
₹ 2.10	ks: 1.Complet	e. 2.Ra	bid groundwater stri	0.30 2.20 ke at 2	.10m bg		MADE GROUND: Brown sandy gravel with freq cobbles. (Reworked Topsoil). Gravel is fine to co sub-angular to sub-rounded of concrete, asphal and sandstone. MADE GROUND: Black sandy gravel (ashy) with frequent cobbles and plastic sheeting. Gravel is coarse, sub-angular to sub-rounded of sandstor brick and concrete. Cobbles are sub-angular of and concrete. (Pockets of soft blue grey clayey medium sand (ash) at 1.60m bgl).	barse, t, brick crete, th fine to ne, ash,	1 2 3 4 5
Stabilit	y: Unstable								

Project No. Co-ords: - Date 13533 co-ords: - 04/12/2019 Location: Choriton Diremanisons 2:0 Citen: Manchester Metropolitan University Depth 2:40 Emergina Samples & In Situ Testing Depth 2:40 Statum Description Image: Samples & In Situ Testing Depth 2:40 Emergina Samples & In Situ Testing Depth 3:30 Depth Depth Correle, sephalt, Inck 3:30 Depth Depth Depth 3:30 Depth Depth Depth 3:30 Depth Depth Depth 3:30 Depth Depth Depth 3:30 Depth Depth			Dn				т.		TrialPit I	
Project Name: Rye Bank Road Project No. 13533 Co-ords: - Level: Date 04/12/2019 Location: Choriton Dimensions 2.20 (m): 2.40 Scale 1:30 Client: Manchester Metropolitan University Depth 2.40 Cleard Stratum Description Image: Stratum Description 0.20 Depth (m) Level MADE GROUND: Brown sandy gravel with frequent cobbes. Greworked Topolit. Gravel is fine to coarse, sub-angular of coarse, sub-angular of brick and sandstone. Cobbes are sub-angular of brick (Hydrocarbon odour between 1.50m b 2.40m bgl). Image: Stratum Description		e) U				Ir	ial Pit Log		
Client: Manchester Metropolitan University Depth C Logged ^a g g g g g g g g g g g g g g g g g g g	Name:	-	Road					Level: Dimensions 2.20	Date 04/12/20 Scale)19
Samples In Situ Testing Depth Level (m) Level (m) Legend Statum Description MADE GROUND: Brown sandy gravel with frequent cobbles. (Reworked Topol), Gravel is fine to coarse, sub-angular to sub-ongular of ourcrete, asphalt, brick and statistic e. Cobbles are sub-angular of ourcrete, asphalt, brick and statistic e. Cobbles are sub-angular of ourcrete, asphalt, brick and statistic e. Cobbles are sub-angular of our-ourcle, asphalt, brick and statistic e. Cobbles are sub-angular of our-ourcle, asphalt, brick and statistic e. Cobbles are sub-angular of our-ourcle, asphalt, brick and statistic e. Cobbles are sub-angular of our-ourcle ourcle fine to coarse, sub-angular to sub-ourcled of concrete, sub- angular to sub-ourcled of concrete, sub- angular to sub-ourcled of concrete, asphalt, brick and statistic e. Cobbles are sub-angular of brick. (Hydrocarbon odour between 1.50m to 2.40m bg). 1 1.700 ES 2.40 End of Pit at 2.40m 2	Client:	Manchester	r Metropo	litan University	,			Depth O	Logged	d
1.70 ES 2.00 End of Pit at 2.40m	e.	Samp	les & In Situ	I Testing	Depth	l evel			E.IVIOS	5
0.20 0.20 cobbles. Reworked Topsoil), Gravel is line to coarse, sub-angular to sub-rounded of concrete, asphat, bick and sandstone. Cobbles are sub-angular to coarse, sub-angular to sub-rounded of concrete, bick, ash, tin and potential asbests piec. Cobbles are sub-angular of bick. (Hydrocarbon odour between 1.50m to 2.40m bg). 1 1.70 ES 2.00 2.40	Wat Stril	Depth	Туре	Results			Legend	· · · · · · · · · · · · · · · · · · ·		
	2.00	1.70	ES					cobbles. (Reworked Topsoil). Gravel is fine to c sub-angular to sub-rounded of concrete, aspha and sandstone. Cobbles are sub-angular of con brick and sandstone. MADE GROUND: Black clayey sandy gravel (a with frequent cobbles. Gravel is fine to coarse, angular to sub-rounded of concrete, brick, ash, potential asbestos pipe. Cobbles are sub-angu brick. (Hydrocarbon odour between 1.50m to 2. bgl).	coarse, It, brick ncrete, shy) sub- tin and ilar of	2

 Trial Pit 116
 Trial Pit 116 Spoil

 Remarks:
 1. Terminated due to potential asbestos pipe.
 2.Rapid groundwater strike at 2.00m bgl.
 3. Strong hydrocarbon odour at 1.50m bgl to 2.40m bgl.

Stability: Unstable

	e3	<u>Sp</u>				Tr	ial Pit Log	TrialPit N TP117 Sheet 1 c	7
Project Name:	Rye Bank F			Proje 1353	ct No. 3		Co-ords: - Level:	Date 05/12/20	
Locatio	n: Chorlton			I			Dimensions 2.20 (m): O	Scale 1:30	
Client:	Mancheste	r Metropo	litan University				(m): Depth 6 1.60	Logged E.Moss	t s
Water Strike	Samp	les & In Siti	u Testing	Depth	Level	Legend	Stratum Description		
<u>s</u> ö	Depth	Туре	Results	(m) 0.20	(m)		MADE GROUND: Brown sandy gravel with frequ cobbles. (Reworked Topsoil). Gravel is fine to co sub-angular to sub-rounded of concrete, asphalt and sandstone. Cobbles are sub-angular of conc	oarse, t, brick	
1.40				1.60			And sandstone. Cobbles are sub-angular of conc brick and sandstone. MADE GROUND: Black gravelly medium to coal sand (ashy) with frequent cobbles and boulders. Gravel is fine to coarse, sub-angular to sub-roun concrete, asphalt, ash and brick. Cobbles are su angular of sandstone, brick and concrete. Bould are sub-angular of concrete. End of Pit at 1.60m	nse nded of ub-	2

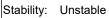
Trial Pit 117

Trial Pit 117 Spoil

Remarks: 1.Terminated due to rapid groundwater ingress. 2.Rapid groundwater strike at 1.40m bgl.

🍄 e3p

	ea	<u>Sp</u>				Tr	ial Pit Log	TrialPit I TP11 Sheet 1 o	8
Project Name:	Rye Bank F	Road		Project 13533			Co-ords: - Level:	Date 05/12/20	
Location	n: Chorlton						Dimensions 2.20 (m):	Scale 1:30	!
Client:	Manchester	r Metropo	litan University	/			(m): 0 Depth 0 1.90	Logged E.Moss	d s
Water Strike	Samp	les & In Situ	u Testing	Depth	Level	Legend			
State 1 and 2 and	Depth	Туре	Results	(m) 0.30	(m)		MADE GROUND: Brown slightly sandy gravel (a with occasional cobbles and frequent rootlets (Reworked Topsoil). Gravel is fine to coarse, sul angular to sub-rounded of sandstone, mudstone concrete and brick. Cobbles are sub-angular of concrete and brick. MADE GROUND: Brown sandy gravel (ashy). G is fine to coarse, of sandstone, mudstone, tin, ar metal and concrete. Cobbles are sub-angular of rounded of brick and concrete. Boulders are sub angular of concrete. End of Pit at 1.90m	b- e, Gravel sh, f sub-	2
									3



Trial Pit 118

Remarks: 1.Terminated at 1.90m bgl due to continued collapse.

Trial Pit 118 Spoil

<mark>©</mark>е3р

	ea	3p				Tr	ial Pit Log	TrialPit TP11 Sheet 1	9
Project Name:	Rye Bank F			Proje 1353	ct No. 3		Co-ords: - Level:	Date 05/12/20	
Locatio	n: Chorlton						Dimensions 2.20 (m): o	Scale 1:30	;
Client:	Manchester	r Metrop	olitan University	,			(m): Depth o 1.80	Logge E.Mos	d s
Water Strike	Samp	les & In Si	itu Testing	Depth	Level	Legend			-
Str	Depth	Туре	Results	(m)	(m)	xxxxxxxx			
	0.10	ES		0.30			MADE GROUND: Brown slightly sandy gravely occasional cobbles and frequent rootlets (Rewo Topsoil). Gravel is fine to coarse, sub-angular to rounded of sandstone, mudstone, concrete and Cobbles are sub-angular of concrete and brick. MADE GROUND: Brown sandy gravel (ashy). 4 is fine to coarse, of sandstone, mudstone, tin, a metal, rebar, potential asbestos sheeting and c Cobbles are sub-angular of sub-rounded of bric concrete. Boulders are sub-angular of concrete (Obstructions of concrete at 0.50m long).	orked o sub- d brick. Gravel ash, oncrete. ck and	23

Trial Pit 119

Remarks: 1.Terminated at 1.80m bgl due to asbestos sheeting.

Trial Pit 119 Spoil

	e	3p				Tr	ial Pit Log	TrialPit No TP120 Sheet 1 of 1	
Project				Proie	ct No.		Co-ords: -	Date	<u> </u>
Name:	Rye Bank F	Road		13533			Level:	05/12/2019)
Locatio	n: Chorlton						Dimensions 2.20	Scale	
							(m): Depth	1:30 Logged	
Client:		-	litan Universit	y			2.20	E.Moss	
Water Strike	•	oles & In Situ		Depth (m)	Level (m)	Legend	Stratum Description		
2.10	Depth 1.00 2.10	B	Results	2.20			MADE GROUND: Brown slightly sandy gravel occasional cobbles and frequent rootlets (Rew Topsoil). Gravel is fine to coarse, sub-angular t rounded of sandstone, mudstone, concrete and Cobbles are sub-angular of concrete and brick MADE GROUND: Brown sandy gravel (ashy). is fine to coarse, of sandstone, mudstone, tin, a metal, and concrete. Cobbles are sub-angular rounded of brick and concrete. Boulders are su angular of concrete. (Pockets of blue grey clay medium sand (White ash)) (Strong hydrocarbo at 2.10m bgl). End of Pit at 2.20m	orked to sub- d brick. Gravel ash, of sub- ib- ey n odour 1	

🛛 еЗр

Remarks: 1.Terminated at 2.20m bgl due to rapid groundwater strike. 2.Rapid groundwater strike at 2.10m bgl. 3.Strong hydrocarbon odour at 2.10m bgl.

Stability: Unstable

								TrialPit	No
K	e:	30				Tr	ial Pit Log	TP12	
								Sheet 1	of 1
Project Name:	Rye Bank F	Road			ct No.		Co-ords: -	Date	
				13533	3		Level: Dimensions 2.20	05/12/20 Scale	
Locatio	n: Chorlton							1:24	
Client:	Mancheste	r Metrop	olitan University		1	1	(m): Depth 0 2.20	Logge E.Mos	d s
Water Strike	Samp Depth	les & In Si Type	itu Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
			20m bgl due to cor	0.30 2.20	collapse		MADE GROUND: Brown slightly sandy gravel occasional cobbles and frequent rootlets (Rewn Topsoil). Gravel is fine to coarse, sub-angular to rounded of sandstone, mudstone, concrete and brick. MADE GROUND: Black sandy gravel (ashy) w frequent cobbles and boulders and pockets of 1 Blanc Process Waste. Gravel is fine to coarse, angular to sub-rounded of sandstone, must concrete and brick. Cobbles are sub-angular of and concrete and brick. Cobbles are sub-angular of and concrete. Boulders are sub-angular of con (Brick Fill)	orked o sub- d brick. ith blue Le , sub- dstone, f brick	1 2 3 5
Stabilit	y: Unstable								

Ş	e	<u>Sb</u>				Tr	ial Pit Log	TrialPit TP12 Sheet 1	22
Project	Rye Bank F	Pood		Proje	ct No.		Co-ords: -	Date	
Name:	Rye Dalik r	Noau		13533	3		Level:	05/12/20	
Locatior	n: Chorlton						Dimensions 2.20 (m): o	Scale 1:30	
Client:	Mancheste	r Metropo	olitan University				(m): Depth 6 3.00	Logge E.Mos	d
re e	Samp	les & In Sit	u Testing	Depth	Level			E.1003	
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
2.90	1.00	ES		0.20			MADE GROUND: Brown slightly sandy g occasional cobbles and frequent rootlets Topsoil). Gravel is fine to coarse, sub-any rounded of sandstone, mudstone, concre Cobbles are sub-angular of concrete and MADE GROUND: Black gravelly coarse e with frequent cobbles and occasional bou is fine to coarse, sub-angular to sub-rour sandstone, ash, mudstone, concrete and Cobbles are sub-angular of brick. Boulde angular of concrete. (Concrete obstructio length).	(Reworked ular to sub- te and brick. brick. sand (ash) Ilders. Gravel ded of brick. s are sub-	2

 Trial Pit 122

 Remarks: 1. Complete. 2. Water strike encountered at 2.90m bgl (Slow ingress).

Trial Pit 122 Spoil

🛛 еЗр

		30				Tr	ial Pit Log	TrialPit TP12	
		γ				••		Sheet 1	of 1
Project		Poad		Proje	ct No.		Co-ords: -	Date	
Name:	Rye Dank r	Noau		13533	3		Level:	05/12/20	
Locatio	on: Chorlton						Dimensions 2.20 (m): O	Scale 1:30	
Client:	Manchester	r Metropo	olitan University				(m): Depth o 2.20	Logge E.Mos	d
ke r	Samp	les & In Sit	u Testing	Depth	Level				-
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
2.00				0.20			MADE GROUND: Brown slightly sandy gravel occasional cobbles and frequent rootlets (Rew Topsoil). Gravel is fine to coarse, sub-angular rounded of sandstone, mudstone, concrete and Dobbes are sub-angular of concrete and brick MADE GROUND: Black gravelly coarse sand with frequent cobbles and occasional boulders is fine to coarse, sub-angular to sub-rounded of sandstone, ash, mudstone, concrete and brick Cobbles are sub-angular of brick. Boulders are angular of concrete. (Concrete obstructions 0. length). End of Pit at 2.20m	vorked to sub- d brick. (ash) s. Gravel of e sub-	2
			-	Trial	Pit P	hoto	graphs		

©е3р

 Trial Pit 123
 Trial Pit 123 Spoil

 Remarks:
 1.Terminated at 2.20m bgl due to rapid groundwater strike.
 2. Groundwater strike encountered at 2.00m bgl (Slow ingress).

	e	<u>3p</u>				Tr	ial Pit Log	TrialPit TP12	24
Project Name:	Rye Bank F	Road		Proje	ct No. 3		Co-ords: - Level:	Sheet 1 Date 05/12/20	
Locatio	n: Chorlton						Dimensions 2.20 (m): o	Scale 1:30	
Client:	Mancheste	r Metropo	olitan University				(m): Depth o 2.20	Logge E.Mos	d s
Water Strike	Samp	les & In Siti	u Testing	Depth	Level	Legend	Stratum Description		
Str	Depth	Туре	Results	(m)	(m)	XXXXXXXXX			
2.10	0.80	В		0.20 2.20			MADE GROUND: Brown slightly sandy gravel occasional cobbles and frequent rootlets (Rew Topsoil). Gravel is fine to coarse, sub-angular 1 rounded of sandstone, mudstone, concrete and Cobbles are sub-angular of concrete and brick MADE GROUND: Black gravelly coarse sand (with frequent cobbles and occasional boulders is fine to coarse, sub-angular to sub-rounded of sandstone, ash, mudstone, concrete and brick Cobbles are sub-angular of brick. Boulders are angular of concrete. (Concrete obstructions 0.5 length). End of Pit at 2.20m	rorked to sub- d brick. (ash) Gash) of sub-	2
				Trial	Pit P	hoto	graphs		
	WAR			TIL	The second	1			citta .

 Trial Pit 124
 Trial Pit 124 Spoil

 Remarks:
 1.Terminated at 2.20m bgl due to rapid groundwater ingress and continued collapse.
 2.Rapid groundwater strike at 2.10m bgl.

 ₿е3р

								TrialPit	No
	e:	50				Tr	ial Pit Log	TP12	5
								Sheet 1	
Project Name:	Rye Bank F	Road		Project 13533	ct No.		Co-ords: - Level:	Date 05/12/20	
	n: Chorlton			10000	<u>,</u>		Dimensions 2.20	Scale	;
							(m): Depth o	1:24 Logge	
Client:			oolitan University	1			2.10	E.Mos	<u>s</u>
Water Strike	Samp Depth	les & In S Type	Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
2.10	0.10 ks: 1.Terminat			0.30 2.10	ndwater	ingress	MADE GROUND: Brown slightly sandy gravel occasional cobbles and frequent rootlets (Rew Topsoil). Gravel is fine to coarse, sub-angular t rounded of sandstone, mudstone, concrete and Cobbles are sub-angular of concrete and brick MADE GROUND: Black sandy gravel (ashy) w occasional cobbles. Gravel is fine to coarse, su angular to sub-rounded of ash, glass, pottery, o rebar, metal, asphalt, concrete, brick and plast Cobbles are sub-angular of concrete and brick hydrocarbon odour).	orked o sub- d brick. ith ib- ieramic, c. (Slight	
Stability	/: Stable							- 0	γP
Cabinty	. Stable								

	e3	<u>Sp</u>				Tr	ial Pit Log	TrialPit I TP12	6
Project Name:	Rye Bank F			Proje 1353	ct No. 3		Co-ords: - Level:	Sheet 1 o Date 05/12/20	
Locatio	n: Chorlton						Dimensions 2.20 (m):	Scale 1:30	
Client:	Mancheste	r Metropo	litan University	/			(m): Depth 0 2.30	Logged E.Moss	d s
Water Strike	Samp	les & In Situ	I Testing	Depth	Level	Legend	Stratum Description		
Str	Depth	Туре	Results	(m)	(m)	Legend			
2.20	1.00	ES		2.30			MADE GROUND: Brown slightly sandy gravely occasional cobbles and frequent rootlets (Rewo Topsoil). Gravel is fine to coarse, sub-angular to rounded of sandstone, mudstone, concrete and Cobbles are sub-angular of concrete and brick. MADE GROUND: Brown sandy gravel (ashy) v frequent cobbles. Gravel is fine to coarse, sub- to sub-rounded of sandstone, ash, mudstone, o and brick. Cobbles are sub-angular of brick and concrete. End of Pit at 2.30m	orked o sub- d brick. vith angular concrete	1 2 3 4
				Trial	Dit D	hoto	aranhs		

yıc ...

Trial Pit 126

Trial Pit 126 Spoil

Remarks: 1.Terminated at 2.20m bgl due to rapid groundwater ingress and continued collapse. 2.Rapid groundwater strike at 2.20m bgl. 🛛 еЗр

Stability: Stable

	e3	D			Tr	ial Pit Log	TrialPit No TP127
			<u> </u>				Sheet 1 of 1
Project Name:	Rye Bank Roa	ad	Proje 1353	ect No. 3		Co-ords: - Level:	Date 05/12/2019
	n: Chorlton		1000			Dimensions 2.20	Scale
						(m): Depth o	1:30
Client:	Manchester M	Aetropolitan University				Depth o	Logged E.Moss
Water Strike		s & In Situ Testing	Depth	Level	Legend	Stratum Description	
≥ö	Depth 1	Type Results	(m)	(m)		MADE GROUND: Brown slightly sandy gravel v	ith
1.70			0.20			occasional cobbles and frequent rootlets (Rewore Topsoil). Gravel is fine to coarse, sub-angular to rounded of sandstone, mudstone, concrete and brick. MADE GROUND: Brown sandy gravel (ashy) with frequent cobbles. Gravel is fine to coarse, sub-angular to sub-rounded of sandstone, ash, mudstone, concrete. (Hydrocarbon odour encountered at the bgl). End of Pit at 2.00m	orked o sub- l brick. //ith angular /oncrete /ided of
		Ţ	Trial	Pit P	hoto	graphs	
				R. Gerrar			

Trial Pit 127

Trial Pit 127 Spoil

Remarks: 1.Complete. 2.Rapid groundwater strike at 1.70m bgl. 3.Strong hydrocarbon odour at 1.80m bgl.

🕫 еЗр

	e3	Sp)			Tr	ial Pit Log	TrialPit I TP12 Sheet 1 d	8
Project	Rye Bank R	oad			ct No.		Co-ords: -	Date	
Name:	-			13533	3		Level: Dimensions 2.20	05/12/20 Scale	
	n: Chorlton						(m): Depth o	1:30 Logged	
Client:			oolitan University			1	3.20	E.Mos	s S
Water Strike	Depth	Type	Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
	0.80	ES		0.30			MADE GROUND: Brown slightly sandy gravel w occasional cobbles and frequent rootlets (Rewo Topsoil). Gravel is fine to coarse, sub-angular to rounded of sandstone, mudstone, concrete and Cobbles are sub-angular of concrete and brick. MADE GROUND: Brown sandy gravel (ashy) w frequent cobbles. Gravel is fine to coarse, sub- to sub-rounded of sandstone, ash, mudstone, c and brick. Cobbles are sub-angular of brick and concrete.	orked o sub- l brick. /ith angular concrete	2
									-
				Trial		hoto	graphs		4 —
		Tri	al Pit 128				Year Trial Pit 128 Spoil		
	xs: Complete. /: Stable							♥ e	3р

¢	e	<u>Sp</u>				Tr	ial Pit Log	TrialPit TP12 Sheet 1	29
Project	Rye Bank I	Road		Proje	ct No.		Co-ords: -	Date	
Name:		loau		1353	3		Level:	05/12/2	
ocatior	n: Chorlton						Dimensions 2.20 (m): o	Scale 1:30	
Client:	Mancheste	r Metropo	litan Universit	у			(m): 0 Depth 0 1.90	Logge E.Mos	ed ss
Water Strike	Samp	oles & In Site	u Testing	Depth	Level	Logond			
Stri	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
	1.30 1.30	B ES		0.10			MADE GROUND: Asphalt. MADE GROUND: Light brown sandy gravel of frequent cobbles. Gravel is fine to coarse, su to sub-rounded of sandstone and brick. Cobb sub-angular of brick. MADE GROUND: Black sandy gravel (ashy) blue grey clayey medium sand (ash). Gravel coarse, sub-angular to sub-rounded of concr mudstone, asphalt and brick. Cobbles are su of brick.	b-angular les are pockets of is fine to ste, ash,	1
1.90				1.90			End of Pit at 1.90m		3
									4
				Trial	Pit P	hoto	graphs		
							7		

Trial Pit 129 Spoil

Trial Pit 129 Remarks: 1. Terminated due to rapid groundwater ingress at 1.90m bgl.

	e3	<u>Sp</u>			Trial Pit Log					
roject				Proje	ct No.		Co-ords: -	Sheet 1 c Date	<u>)</u> 1	
ame:	Rye Bank R	oad		13533				05/12/20	19	
ocation	: Chorlton						Dimensions 2.20 (m):	Scale 1:30		
lient:	Manchester	Metropo	litan Universit	y			(m): Depth o 2.20	Logged E.Moss	1	
er ée	Sampl	es & In Situ	I Testing	Depth	Level			E.10033	<u>, </u>	
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description			
				0.10			MADE GROUND: Asphalt. MADE GROUND: Light brown sandy gravel with frequent cobbles. Gravel is fine to coarse, sub-ang to sub-rounded of sandstone and brick. Cobbles a sub-angular of brick.		1	
2.00				1.30			MADE GROUND: Black sandy gravel (ashy) with pockets of soft grey blue clayey medium sand (ash Gravel is fine to coarse, sub-angular to sub-round concrete, ash, mudstone, asphalt and brick. Cobbl are sub-angular of brick.	ed of	2	
				2.20			End of Pit at 2.20m		3	

Trial Pit 130 Remarks: 1.Terminate due to rapid groundwater strike at 2.0 m bgl.

Trial Pit 130 Spoil

🛛 еЗр

		e3p	C			Bc	oreh	ole Log	Borehole No WS101 Sheet 1 of	I
Projec	t Name:	Rye Ba	nk Road	ו ר	Project No. 13533		Co-ords:		Hole Type WS	
Locatio	on:	Chorlto	n				Level:		Scale 1:50	
Client:		Manche	ester Me	etropolitan Universi	ity		Dates:	03/12/2019	Logged By E.Moss	/
Well	Water Strikes		1 1	n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
		Sampl Depth (m) 1.00 1.20 1.80 2.00 3.00 4.00 4.00 4.80 5.00	e and li Type SPT ES SPT SPT ES SPT ES SPT	n Situ Testing Results N=12 (2,5/5,3,2,2) N=5 (2,1/1,1,1,2) N=2 (0,0/0,0,0,2) N=18 (2,3/5,5,4,4) N=16 (3,3/4,4,4,4)	(m) 0.30) 1.20 3.20		Legend	Stratum Description MADE GROUND: Brown slightly grave to medium sand with occasional rootle Topsoil). Gravel is fine to coarse, sub- ounded of sandstone, brick and concr MADE GROUND: Red brown sandy gr occasional cobbles. Gravel is fine to coarse, sandstone. Cobbles are sub-angular to of concrete, asphalt and brick. (Hydroc encountered between 1.50m to 5.00m (Circa 2.00m bgl becomes loose) (No 2.00m and 3.00m bgl, assume continue MADE GROUND: Very loose dark brow clayey gravel. Gravel is fine to coarse, sub-rounded of asphalt, concrete and (Becoming medium dense at circa 4.00 (Hydrocarbon odour).	Illy clayey fine ts (Reworked angular to sub- ete. ravel with parse, sub- ete and f brick. In sandy gravel. o sub-rounded arbon odour bgl). return between ation of above).	
Remar 1.Com hydroc	plete. 2.	No return at 2 dour between	.00m to 1.50m a	3.00m bgl. 3.Fell i and 5.00m bgl. 5.M	n to 3.00m bgl Ionitoring well	3.Slow g installed.	roundwater	strike at 4.30m bgl 4.Strong	©e3	

Project Name: Rye Bank Road Project No. 13533 Location: Choriton Client: Manchester Metropolitan University Well Water Strikes Sample and In Situ Testing Depth (m) Depth (m) Leve (m) 1.00 SPT N=4 (5,6/4,0,0,0) 1.00 2.00 SPT N=1 (1,0/0,0,0,1) 1.00 3.00 SPT N=12 (3,3/4,3,3,2) 1.00 4.00 SPT N=4 (2,2/2,1,0,1) 1.01 4.00 SPT N=4 (2,2/2,1,0,1) 1.01	Co-ords: Level: Dates: Legend	03/12/2019 Stratum Description	Sheet 1 of 7 Hole Type WS Scale 1:50 Logged By E.Moss	•
Location: Chorlton Client: Manchester Metropolitan University Well Water Strikes Sample and In Situ Testing Depth (m) Type Results 0.20 I Depth (m) Type Results 0.20 1.00 SPT N=4 (5,6/4,0,0,0) 1.00 2.00 SPT N=1 (1,0/0,0,0,1) 3.00 SPT N=12 (3,3/4,3,3,2) 4.00 4.00 SPT N=4 (2,2/2,1,0,1) ES N=4 (2,2/2,1,0,1)	Dates:		Scale 1:50 Logged By	,
WellSample and In Situ Testing Depth (m)Depth (m)Leve (m)WellMater Depth (m)TypeResults0.201.00SPTN=4 (5,6/4,0,0,0)1.001.00SPTN=4 (5,6/4,0,0,0)1.002.00SPTN=1 (1,0/0,0,0,1)3.00SPTN=12 (3,3/4,3,3,2)3.00SPTN=4 (2,2/2,1,0,1)4.004.00SPT4.00SPTN=4 (2,2/2,1,0,1)				,
Well Strikes Depth (m) Type Results (m) (m) 1.00 SPT N=4 (5,6/4,0,0,0) 1.00 0.20 1.00 SPT N=4 (5,6/4,0,0,0) 1.00 1.00 2.00 SPT N=1 (1,0/0,0,0,1) 1.00 1.00 3.00 SPT N=12 (3,3/4,3,3,2) 1.00 1.00 4.00 SPT N=4 (2,2/2,1,0,1) 1.00 1.00	Legend	Stratum Description		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
5.00 SPT N=11 (3,3/2,3,3,3) 5.45		MADE GROUND: Brown slightly grave to medium sand with occasional rootlef Topsoil). Gravel is fine to coarse, sub-ar rounded of sandstone, brick and concre MADE GROUND: Firm brown gravelly fine to coarse, sub-angular to sub-roun and concrete. MADE GROUND: Loose black gravelly (ash). Gravel is fine to coarse, sub-ang mudstone, ash, concrete and brick. (St hydrocarbon odour encountered betwe 4.00m bgl). (Circa 2.00m bgl becomes very loose) bgl becomes medium dense) (Circa 4.0 becomes very loose) (Circa 5.00m bgl loose). End of Borehole at 5.45m	is (Reworked ingular to sub- ete. clay. Gravel is ded of brick coarse sand ular of rong en 3.10m and (Circa 3.00m)0m bgl becomes	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

		e3p)			Bc	oreh	ole Log	Borehole N WS103 Sheet 1 of	3
Projec	t Name:	Rye Bar	nk Road		Project No. 13533		Co-ords:		Hole Type WS	
Locatio	on:	Chorlton	1				Level:		Scale 1:50	
Client:		Manche	ster Me	tropolitan Universit	ty		Dates:	03/12/2019	Logged By E.Moss	ý
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	I	
	Strikes	Depth (m) 1.00 1.80 2.00 3.00 4.00 5.00	Type SPT SPT SPT SPT	Results N=15 (7,6/6,6,2,1) N=2 (1,0/0,0,2,0) N=11 (2,2/2,2,3,4) N=12 (5,6/4,2,3,3) N=7 (3,3/3,2,1,1)	(m) 0.20 1.00	(m)		ADE GROUND: Brown slightly grave to medium sand with occasional rootle Topsoil). Gravel is fine to coarse, sub- rounded of sandstone, brick and conce MADE GROUND: Firm brown gravelly fine to coarse, sub-angular to sub-rour and concrete. MADE GROUND: Loose black gravelly (ash). Gravel is fine to coarse, sub-ang mudstone, ash, concrete and brick. (Circa 2.00m bgl becomes very loose) bgl becomes loose) (Circa 4.00m bgl be medium dense) (Circa 5.00m bgl becomes bgl becomes loose) (Circa 5.00m bgl becomes bgl becomes loose) and the sub- medium dense) (Circa 5.00m bgl becomes bgl becomes loose) (Circa 5.00m bgl becomes loose) (Circa	Illy clayey fine ts (Reworked angular to sub- ete. clay. Gravel is ided of brick y coarse sand gular of (Circa 3.00m pecomes mes loose).	
Remar 1.Com		Collapse in to	2.00m	bgl 3.Slow groundv	water strike at	1.20m bç	gl 4.Monitor	ing well installed.	©e3	10 - 3p

		e3p)			Bo	oreh	ole Log	Borehole N WS104 Sheet 1 of	4
Projec	t Name:	Rye Bar	nk Roa	n I	Project No. 13533		Co-ords:		Hole Type WS	9
Locatio	on:	Chorlton	ı				Level:		Scale 1:50	
Client:		Manche	ster Me	etropolitan Universi	ty		Dates:	03/12/2019	Logged By E.Moss	y
Well	Water	_	and I	n Situ Testing	Depth	Level	Legend	Stratum Description	I	
	Strikes	Depth (m) 1.00 1.20 2.00 3.00 4.00 5.00	SPT ES SPT SPT SPT	Results N=13 (5,6/3,3,3,4) N=4 (2,3/2,2,0,0) N=21 (3,3/4,7,6,4) N=17 (3,4/4,4,5,4) N=20 (3,3/4,5,4,7)	1.30	(m)		MADE GROUND: Brown slightly grave to medium sand with occasional rootle Topsoil) .Gravel is fine to coarse, sub- rounded of sandstone, brick and concr MADE GROUND: Medium dense light gravelly fine sand. Gravel is fine to coa angular to sub-rounded of sandstone, is concrete. MADE GROUND: Medium dense black coarse sand (ash). Gravel is fine to coa angular of mudstone, ash, concrete an hydrocarbon odour encountered betwe 4.00m bgl). (Circa 2.00m bgl becomes (Circa 3.00m bgl becomes medium de Circa 3.00m bgl becomes medium de End of Borehole at 5.45m	Illy clayey fine ts (Reworked angular to sub- ete. brown slightly arse, sub- mudstone and k gravelly arse, sub- d brick. (Strong sen 3.10m and very loose) nse).	
Remar 1.Com		Collapse in to	2.50m	bgl 3.Slow ground	water strike at	1.20m bç	gl 4.Monitor	ing well installed.	©e3	10 – 3p

		e3r)			Bo	oreh	ole Log	Borehole N	
					Designation			0	Sheet 1 of	
Project	t Name:	Rye Bar	nk Roa	n – – – – – – – – – – – – – – – – – – –	Project No. 13533		Co-ords:		Hole Type WS	•
Locatio	on:	Chorltor	ו				Level:		Scale 1:50	
Client:		Manche	ster Me	etropolitan Univers	ity		Dates:	03/12/2019	Logged By	/
	Water	Sample	and li	n Situ Testing	Depth	Level			E.Moss	
Well	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description		
		1.00	SPT	N=26 (6,8/9,6,7,4 N=0 (2,0/0,0,0,0)				MADE GROUND: Brown slightly grave to medium sand with occasional rootle Topsoil). Gravel is fine to coarse, sub- rounded of sandstone, brick and concu MADE GROUND: Medium dense blac (ashy) with occasional cobbles and po blue grey clayey medium sand (ash). (coarse, sub-angular of brick, ash and e 2.00m bgl becomes very loose) (Circa becomes medium dense).	ts (Reworked angular to sub- ete. k sandy gravel ckets of soft Gravel is fine to concrete. (Circa	1
		3.00	SPT	N=22 (3,5/8,7,3,4)					3
		3.80 4.00	ES SPT	N=4 (3,2/3,0,0,1)	3.60			MADE GROUND: Blue grey clayey me (Ash). (slight sulphur odour) (circa 4.00 very loose).	edium sand Om bgl becomes	4
										5 — 6 — 7 — 8 — 9 — 10 —
Remar 1.Term		t 4.00m bgl du	e to co	ntinued collapse b	ack to 2.00m b	gl. 2.Mon	itoring well	installed.	©e3	

	e3p	C			Bo	oreho	ole Log	Borehole No WS106 Sheet 1 of	6
Project Name	: Rye Ba	nk Road		Project No. 13533		Co-ords:		Hole Type WS	
Location:	Chorlto	า		10000		Level:		Scale 1:50	
Client:	Manche	ster Me	etropolitan Univers	ity		Dates:	03/12/2019	Logged By E.Moss	/
Well Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
	0.80 0.80 1.00 2.00	Type ES SPT SPT	Results N=17 (7,6/4,4,5,4 N=4 (3,0/0,0,2,2))			MADE GROUND: Brown slightly grave to medium sand with occasional rootte Topsoil) .Gravel is fine to coarse, sub- rounded of sandstone, brick and concr MADE GROUND: Medium dense red s with frequent cobbles. Gravel is fine to angular to sub-rounded of sandstone, concrete. Cobbles are sub-angular of t (No return between 1.00m and 2.00m continuation of above strata). (Circa 2.00m bgl becomes very loose) bgl becomes dense).	ts (Reworked angular to sub- ete. andy gravel coarse, sub- prick and prick. bgl, assume	1
	3.00	SPT	50 (10,12/50 for 30mm)	3.00			End of Borehole at 3.00r	1	3 - - 5 - - - - - - - - - - - - - - - - -
Remarks 1.Terminated installed.	due to refusal c	n cobb	le within Made Gro	bund at 3.00m	bgl. 2.No	return from	1.00m to 2.00m bgl. 3.Monitoring w	ell 👔 👝 î	9 - 10 -

		e3p)			Bo	oreh	ole Log	Borehole N WS107 Sheet 1 of	7
Project	t Name:	Rye Bar	nk Road		Project No. 13533		Co-ords:		Hole Type WS	
Locatio	on:	Chorltor	1		15555		Level:		Scale 1:50	
Client:		Manche	ster Me	etropolitan Universi	ty		Dates:	04/12/2019	Logged By E.Moss	ý
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
	₹ Strikes	Depth (m) 1.00 2.00 3.00 4.00	Type SPT SPT SPT	Results N=20 (5,7/6,6,5,3) N=17 (3,4/4,5,4,4) N=12 (3,3/2,3,3,4) N=16 (4,6/5,5,3,3)	(m) 0.30 0.80) 2.00		Legend	Stratum Description MADE GROUND: Brown slightly claye (Reworked Topsoil). Gravel is fine to co angular to sub-rounded of sandstone, concrete and brick. MADE GROUND: Brown sandy gravel frequent cobbles. Gravel is sub-angula ash, mudstone, concrete and brick. Cc angular of brick. MADE GROUND: Medium dense brow to medium sand. Gravel is fine to coars to sub-rounded of sandstone, concrete MADE GROUND: Medium dense brow with frequent cobbles. Gravel is fine to angular to sub-rounded of concrete. Cc angular of concrete.	y sandy gravel. barse, sub- mudstone, (ashy) with ar of sandstone, ibbles are sub- in gravelly fine se, sub-angular e and brick.	
Remar	ks									10 -
1.Term	inated a	t 4.45m bgl du ell installed. 4.9	e to co Slow gr	ntinued collapse at oundwater strike a	3.00m bgl. 2. t 3.00m bgl.	.Only 20%	6 of core re	covered at 3.00 to 4.00m bgl.	©e3	3p

		e3p	C			Bc	oreh	ole Log	Borehole N WS108 Sheet 1 of	3
Projec	t Name:	Rye Bai	nk Roa	n I	Project No. 13533		Co-ords:		Hole Type WS	
Locati	on:	Chorltor	n				Level:		Scale 1:50	
Client:		Manche	ester Me	etropolitan Universi	ty	1	Dates:	04/12/2019	Logged By E.Moss	/
Well	Water Strikes	Sample Depth (m)	e and li Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
		Depth (m)	SPT SPT ES SPT	Results N=23 (7,6/6,7,5,5) N=30 (4,5/5,8,9,8) N=0 (2,1/0,0,0,0)	0.20			MADE GROUND: Brown slightly claye (Reworked Topsoil). Gravel is fine to c angular to sub-rounded of sandstone, concrete and brick. Gravel is fine to coa to sub-rounded of sandstone, ash, mu concrete and brick. Cobbles are sub-a slightly gravelly clay with occasional co (Reworked Clay). Gravel is fine to coa to sub-rounded of sandstone, concrete Cobbles are sub-angular of brick. MADE GROUND: Black sandy gravel frequent cobbles. Gravel is fine to coa to sub-rounded of sandstone, ash, mu concrete and brick. Cobbles are sub-a MADE GROUND: Very soft very low si slightly gravelly clay with occasional co (Reworked Clay). Gravel is fine to coa to sub-rounded of sandstone, concrete Cobbles are sub-angular of brick. No return- assume strata as: MADE G loose black sandy gravel (ashy) with Gravel is fine to coarse, sub-angular to of sandstone, ash, mudstone, concrete Cobbles are sub-angular of brick. End of Borehole at 4.45r	oarse, sub- mudstone, (ashy) with rse, sub-angular dstone, ngular of brick. gth brown obbles. rse, sub-angular e and brick. (ashy) with rse, sub-angular dstone, ngular of brick. trength brown obbles. rse, sub-angular e and brick. ROUND: Very requent cobbles. o sub-rounded e and brick.	
Remar 1.Tern		t 4.45m bgl du	le to co	ntinued collapse. 2	.No return fror	 m 3.10 to	4.00m bgl.	3.Monitoring well installed.	©e3	3p

		e3p)			Bo	oreh	ole Log	Borehole N WS109 Sheet 1 of	•
Project	Name:	Rye Bar	nk Road		Project No. 13533		Co-ords:		Hole Type WS	
Locatio	n:	Chorlton	ı				Level:		Scale 1:50	
Client:		Manche	ster Me	etropolitan Universit	ty		Dates:	04/12/2019	Logged By E.Moss	/
	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
		Depth (m) 1.00 2.00 3.00 4.00	Type SPT SPT SPT	Results N=16 (3,4/4,3,5,4) N=8 (2,1/1,2,3,2) N=21 (7,7/6,5,4,6) N=13 (3,4/4,3,3,3)	0.20			MAE GROUND: Brown slightly clayey (Reworked Topsoil). Gravel is fine to c angular to sub-rounded of sandstone, concrete and brick. (Circa 2.00m bgl b (Circa 3.00m bgl becomes medium de becomes medium de End of Borehole at 4.45r	sandy gravel. oarse, sub- mudstone, orown gravelly coarse, sub- mudstone, ash, ecomes loose) nse).	
Remark 1.Termi		t 4.00m bgl du	e to co	ntinued collapse to	3.00m bgl. 2.	Monitorin	g well insta	lled.	©e3	3p

		e3p)			Bo	oreh	ole Log	Borehole N WS110 Sheet 1 of)
Projec	t Name:	Rye Bar	nk Roa		Project No. 13533		Co-ords:		Hole Type WS	
Locatio	on:	Chorltor	ו		10000		Level:		Scale 1:50	
Client:		Manche	ster Me	etropolitan Universi	ity		Dates:	04/12/2019	Logged By E.Moss	/
Well	Water	Sample	e and l	n Situ Testing	Depth	Level	Legend	Stratum Description		
	Strikes	Depth (m)	Туре	Results	(m)	(m)		MADE GROUND: Brown slightly claye	y sandy gravel.	
		0.50	ES SPT	N=8 (3,2/2,2,2,2)	0.20			(Reworked Topsoil). Gravel is fine to co angular to sub-rounded of sandstone, concrete and brick. MADE GROUND: Loose black sandy of with frequent cobbles. Gravel is fine to angular to sub-rounded of sandstone, concrete and brick. Cobbles are sub-a (Becoming medium dense at circa 2.00 dense at circa 3.00m bgl).	nudstone, gravel (ashy) coarse, sub- ash, mudstone, ngular of brick.	1
		2.00	SPT	N=28 (7,9/8,8,7,5))					2 -
		3.00	SPT	50 (10,13/50 for 35mm)	3.00			End of Borehole at 3.00n	T	3 4 5 6 7 8 9 9 10
Remar 1.Term		t 3.00m bgl du	e to ref	usal on cobble wit	hin Made Grou	 Ind. 2.Mo	nitoring wel	ll installed.	©e3	

	e3r)			Bc	oreh	ole Log	Borehole No WS111	
			. F	Project No.				Sheet 1 of Hole Type	
Project Name:	Rye Bar	nk Road	1 I	13533		Co-ords:		ws	
ocation:	Chorltor	ו				Level:		Scale 1:50	
Client:	Manche	ster Me	etropolitan Universit	ty		Dates:	04/12/2019	Logged By E.Moss	/
Well Water	Sample	e and li	n Situ Testing	Depth	Level	Legend	Stratum Description	I	
Strikes	Depth (m)	Туре	Results	(m)	(m)		MADE GROUND: Brown slightly claye	v sandv gravel.	
1.20	1.00	SPT	N=23 (4,5/5,6,5,7)	0.20			(Reworked Topsoil). Gravel is fine to c angular to sub-rounded of sandstone, concrete and brick. MADE GROUND: Medium dense blac gravel (ashy) with frequent cobbles. G coarse, sub-angular to sub-rounded of ash, asphalt, brick and concrete. Cobb angular of brick and concrete. MADE GROUND: Medium dense brow Gravel is fine to coarse sub-angular to limestone and sandstone.	oarse, sub- mudstone, k red sandy ravel is fine to f sandstone, , oles are sub- vn sandy gravel.	1
	2.00	SPT	N=27 (4,3/7,8,6,6)						2 -
				2.20 2.40			MADE GROUND: Medium dense blac gravel (ashy) with frequent cobbles. G coarse, sub-angular to sub-rounded of	ravel is fine to	-
	2.70	ES		2.80			ash, asphalt, brick and concrete. Cobb angular of brick and concrete.	bles are sub-	-
	3.00	SPT	N=1 (2,3/1,0,0,0)				MADE GROUND: Blue grey clayey me (Ash).	edium sand	3 -
							MADE GROUND: Very loose black rec with frequent cobbles. Gravel is fine to angular to sub-rounded of sandstone, concrete. Cobbles are sub-angular of concrete.	coarse, sub- brick and	-
23.1.122				4.00			End of Borehole at 4.00r	n	4 -
									5

	e3p)			Bc	oreh	ole Log	Borehole N WS112 Sheet 1 of	2
Project Name	: Rye Bar	nk Roa		roject No. 3533		Co-ords:		Hole Type WS	
Location:	Chorltor	ı				Level:		Scale 1:50	
Client:	Manche	ster Me	etropolitan University	/		Dates:	04/12/2019	Logged By E.Moss	ý
Well Water		and li	n Situ Testing	Depth	Level	Legend	Stratum Description		
Strikes	Depth (m)	Туре	Results	(m)	(m)		MADE GROUND: Asphalt.		_
	1.00	SPT	N=18 (4,4/5,5,4,4)	0.20 0.40 0.90 1.00			MADE GROUND: Brown sandy gravel cobbles. Gravel is fine to coarse, sub- rounded of sandstone, concrete and a are angular to sub-rounded of concrete MADE GROUND: Black gravelly coars Gravel is fine to coarse, sub-angular to of sandstone, ash, concrete, brick and MADE GROUND: Brown gravelly clay. to coarse, sub-angular to sub-rounded brick. MADE GROUND: Medium dense blact coarse sand (ashy). Gravel is fine to c	angular to sub- sphalt. Cobbles e. e sand (ashy). o sub-rounded asphalt. Gravel is fine of concrete and c gravelly	1
	2.00	SPT	N=12 (4,5/4,3,2,3)	2.00			angular to sub-rounded of sandstone, brick and asphalt.	ash, concrete, /	2 -
	2.30	ES					MADE GROUND: Stiff medium strengt gravelly clay. Gravel is fine to coarse, s sub-rounded of concrete and brick. (Ci becomes soft very low strength).	sub-angular to	
	3.00	SPT	N=4 (3,4/3,0,0,1)	3.45			End of Borehole at 3.45r	n	3
Remarks 1.Terminated	 at 3.45m bgl du	e to co	ntinued collapse. 2.N	//	ell installe	d.		⊘ e3	

6	93¢)			Bo	oreh	ole Log	CP101	
ame:	Rye Bar	nk Roa	0	-		Co-ords:		Hole Type	
	-		1	13533		l evel:		CP Scale	
	-							1:50 Logged By	/
			•	y	T	Dates:	04/12/2019	E.Moss	
ater rikes –	-			Depth (m)	Level (m)	Legend	Stratum Description	1	
	1.00 1.00	B SPT	N=7 (4,4/3,2,1,1)	0.20			occasional cobbles and frequent rootle fine to coarse, sub-angular to sub-rour sandstone, mudstone, concrete and b are sub-angular to concrete and brick. Topsoil) MADE GROUND: Loose brown sandy (ashy) with occasional cobbles. Grave coarse, sub-angular to sub-rounded of	ts. Gravel is nded of rick. Cobbles (Reworked / clayey gravel l is fine to sandstone,	1
2.00	2.00	SPT	N=7 (1,2/2,1,2,2)	2.00			(ashy) with occasional cobbles. Grave coarse, sub-angular to sub-rounded of	l is fine to sandstone,	2
	3.00 3.00	B SPT	N=9 (4,5/3,2,2,2)	3.00			(ashy) with occasional cobbles. Grave coarse, sub-angular to sub-rounded of	l is fine to sandstone,	3
	4.00	SPT	N=20 (1,3/4,4,5,7)						4
	5.00 5.00	B SPT	N=8 (3,3/2,2,2,2)	5.00			(ashy) with occasional cobbles. Grave coarse, sub-angular to sub-rounded of	l is fine to sandstone,	5
	6.50	SPT	N=37 (3,5/6,9,10,12	.) 6.50			clayey gravel (ashy) with occasional c is fine to coarse, sub-angular to sub-ro	obbles. Gravel ounded of	7
	8.00 8.00	B SPT	N=15 (2,2/3,3,4,5)						8
	9.50	SPT	N=15 (2,2/3,3,4,5)						
ri	ater kes -	Imme: Rye Bar Chorlton Manche ater Sample Iter Sample Depth (m) 1.00 1.00 2.00 00 2.00 00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 4.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00	Choriton Manchester Me Manchester Me Image: Sample and In Depth (m) Type 1.00 B 1.00 SPT 2.00 SPT 3.00 B 4.00 SPT 5.00 B 5.00 SPT 6.50 SPT 8.00 SPT	Rye Bank Road Choriton Manchester Metropolitan Universit Manchester Metropolitan Universit Manchester Metropolitan Universit Manchester Metropolitan Universit Depth (m) Type Results 1.00 B N=7 (4,4/3,2,1,1) 2.00 SPT N=7 (1,2/2,1,2,2) 3.00 B N=9 (4,5/3,2,2,2) 4.00 SPT N=9 (4,5/3,2,2,2) 4.00 SPT N=9 (4,5/3,2,2,2) 6.50 SPT N=8 (3,3/2,2,2,2) 6.50 SPT N=8 (3,3/2,2,2,2) 8.00 B N=37 (3,5/6,9,10,12 8.00 B N=15 (2,2/3,3,4,5)	Project No. 13533 Project No. 13533 Choriton Manchester Metropolitan University Depth Depth (m) Type Depth (m) 100 B N=7 (4,4/3,2,1,1) Depth (m) 2.00 SPT N=7 (1,2/2,1,2,2) 2.00 3.00 B N=7 (1,2/2,1,2,2) 2.00 3.00 SPT N=9 (4,5/3,2,2,2) 3.00 4.00 SPT N=9 (4,5/3,2,2,2) 5.00 5.00 B N=8 (3,3/2,2,2,2) 5.00 6.50 SPT N=37 (3,5/6,9,10,12) 6.50 8.00 B N=15 (2,2/3,3,4,5) 1	Ime: Rye Bank Road Project No. 13533 Choriton Jenton Inversity Manchester Metropolitan University Depth (m) Type Results Depth (m) Level (m) 1.00 B N=7 (4.4/3.2,1.1) 0.20 Image: Colspan="4">Image: Colspan="4">Colspan= 4.4/3.2,1.1) Image: Colspan="4">Colspan= 4.4/3.2,1.1) Colspan= 4.4/3.2,1.1) 1.00 SPT N=7 (1.2/2,1.2,2) 2.00 Image: Colspan="4">Colspan= 4.4/3.2,1.1) 3.00 SPT N=7 (1.3/4,4.5,7) 3.00 Image: Colspan="4">Colspan= 4.4/3.2,2.2) 4.00 SPT N=20 (1.3/4,4.5,7) 5.00 Image: Colspan="4">Colspan= 4.4/3.2,2.2) 5.00 SPT N=8 (3.3/2,2,2,2) 5.00 Image: Colspan="4">Colspan= 4.4/3.2,1.1) 6.50 SPT N=37 (3.5/6,9.10,12) 6.50 Image: Colspan="4">Colspan= 4.4/4.0/4.4/4.4/4.4/4.4/4.4/4.4/4.4/4.4/	Project No. 13533 Co-ords: Chortfon Level: Manchester Metropolitan University Dates: Manchester Metropolitan University Dates: Nerotitan University Dates: Sample and In Situ Testing Depth Level Legend 1.00 BPT N=7 (4,4/3,2,1,1) 1.00 Marchester Metropolitan University 0.20 Image: Marchester Metropolitan University Image: Marchester Metropolitan University 0.20 Image: Marchester Metropolitan University Image: Marchester Metropolitan University 0.20 Image: Marchester Metropolitan University Image: Marchester Metropolitan University 0.20 Image: Marchester Metropolitan University Image: Marchester Metropolitan Univer	Rye Bank Road Project No. 13533 Co-ords: Chortfon Level: Manchester Metropollan University Dates: 04/12/2019 Iter Sample and In Situ Testing Depth (m) Level: MADE GROUND: Brown alighty such and provide and for such and provide and provid	Bype Stratum Stratum Stratum Imme: Rye Bank Road Project No 13533 Co-ords: Use of PC Choriton Level: Scriet Scriet Scriet Manchester Metropolitan University Dates: 04/12/2019 Lebost Marchester Metropolitan University Dates: 04/12/2019 Lebost Marchester Metropolitan University Dates: 04/12/2019 Lebost Image: Sample and in Situ Testing Depth Level Legend Stratum Description Image: Sample and in Situ Testing Depth Level Legend Stratum Description Image: Sample and in Situ Testing Depth Level Legend Stratum Description Image: Sample and in Situ Testing Depth Level Legend Stratum Description Image: Sample and in Situ Testing Depth Level Legend Stratum Description Image: Sample and in Situ Testing Depth Level Legend Stratum Description Image: Sample and in Situ Testing Depth Level Leg

1.Complete. 2.Chiselled from 6.70 m to 7.10 m for 1 hour. 3.Chiselled from 7.30 m to 7.60 m for 45 minutes. 4.Chiselled from 10.20 m to 10.40m for half an hour. 5.Chiselled from 11.30 m to 11.70 m for 45 minutes. 6.Chiselled from 14.00 m to 14.50 m for 1 hour. 7.Monitoring well installed. 7.Rapid groundwater strike at 2.00m bgl.

(e3p)			Bo	oreho	ole Log	Borehole N CP101 Sheet 2 of	I
Project Name:	Rye Bar	nk Roa	a	oject No.		Co-ords:		Hole Type CP	
_ocation:	Chorltor	n				Level:		Scale 1:50	
Client:	Manche	ester Me	etropolitan University			Dates:	04/12/2019	Logged By E.Moss	у
Well Water Strikes	Sample		n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Descriptior	1	
	Depth (m) 11.00 11.00	B SPT	Results N=36 (3,4/6,9,10,11)	11.00			MADE GROUND: Medium dense brow clayey gravel (ashy) with occasional c is fine to coarse, sub-angular to sub-ro sandstone, metal, ash, timber concrete Cobbles are sub-angular of concrete. MADE GROUND: Dense brown, , san gravel (ashy) with occasional cobbles. coarse, sub-angular to sub-rounded of ash, metal, timber concrete and brick. sub-angular of concrete.	obbles. Gravel punded of e and brick. dy, clayey Gravel is fine to f sandstone,	11
	12.50	SPT	N=20 (2,2/3,3,5,9)	12.70			Stiff medium strength brown sandy CL of fine to medium SAND. (Becoming v high strength at circa 14.00m bgl).	AY with bands ery stiff very	13
	14.00 14.50	SPT SPT	50 (9,10/50 for 285mm) 50 (7,12/50 for 255mm)						14
				14.90			End of Borehole at 14.90	m	15
									17
									18
									19
emarks									20
.Complete. 2.4 0.20 m to 10.4	40m for half ar	hour.		0 m to 11.70) m for 45		m for 45 minutes. 4.Chiselled from .Chiselled from 14.00 m to 14.50 m	for 😵 e 🤅	31

		e3p)			Bc	oreh	ole Log	Borehole No CP102)
Projec	t Name:	Rye Bar	nk Roa	n I	Project No.		Co-ords:		Sheet 1 of 2 Hole Type CP	
Locati	on:	Chorltor	1		13533 Cooo Leve				Scale 1:50	
Client:		Manche	ster Me	etropolitan Universi	sity		Dates: 04/12/2019		Logged By E.Moss	/
Well	Water Strikes						Stratum Description			
	0.30 Depth (m) Type			Results	0.20			MADE GROUND: Brown slightly sand, occasional cobbles and frequent rootle fine to coarse, sub-angular to sub-rour sandstone, mudstone, concrete and bri are sub-angular to concrete and brick. Topsoil)	ets. Gravel is nded of rick. Cobbles	
		1.00 1.00 1.00	B D SPT	N=10 (1,1/2,3,3,2)				MADE GROUND: Medium dense brow (ashy) with occasional cobbles. Gravel coarse, sub-angular to sub-rounded of ash, concrete and brick. Cobbles are s concrete.	is fine to sandstone,	1 -
	2.30	2.00	SPT	N=14 (2,3/4,4,3,3)						2 -
		3.00 3.00 3.00	B D SPT	N=26 (3,4/6,6,7,7)						3 -
		4.00	SPT	N=46 (2,4/7,9,15,15	i) 4.00			MADE GROUND: Dense brown sand with occasional cobbles. Gravel is fine angular to sub-rounded of sandstone, and brick. Cobbles are sub-angular of	to coarse, sub- concrete, ash	4 -
		5.00 5.00 5.00	B D SPT	51 (7,12/51 for 190mm)	5.00			MADE GROUND: Very dense brown s (ashy) with occasional cobbles. Gravel coarse, sub-angular to sub-rounded of concrete, ash and brick. Cobbles are s concrete.	is fine to sandstone,	5 -
		6.50	SPT	N=25 (4,4/6,7,7,5)	6.50			MADE GROUND: Medium dense brow (ashy) with occasional cobbles. Grave coarse, sub-angular to sub-rounded of concrete, ash and brick. Cobbles are s concrete.	is fine to sandstone,	6 -
		8.00 8.00 8.00	B D SPT	N=23 (2,4/6,6,6,5)						8 -
		9.50 9.50	D SPT	N=32 (7,9/11,9,8,4)	9.50			MADE GROUND: Medium dense brow (ashy) with occasional cobbles. Grave coarse, sub-angular to sub-rounded of	is fine to	9 -

		e3p)			Bc	oreho	ole Log	Borehole N CP102 Sheet 2 of	2
Project	t Name:	Rye Bar	nk Roa		Project No. 13533		Co-ords:		Hole Type CP	
Locatio	on:	Chorltor	ı				Level:		Scale 1:50	
Client:		Manche	ster Me	etropolitan Universit	ty		Dates:	04/12/2019	Logged By E.Moss	у
Well	Water Strikes	· · · ·		n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
		Depth (m)	D SPT SPT	Results N=28 (3,4/6,6,7,9) 50 (6,10/50 for 285mm) 52 (7,10/52 for 226mm)	10.20			MADE GROUND: Medium dense brow (ashy) with occasional cobbles. Gravel coarse, sub-angular to sub-rounded of ash, concrete and brick. Cobbles are s concrete. Very stiff high strength brown sandy Cl of fine to medium SAND. (Becoming we high strength at circa 12.50m bgl).	is fine to sandstone, ub-angular of _AY with bands ery stiff very	
Remarl 1.Com	plete. 2.	Chiselled from	4.30 m	n to 4.70 m for 45 m	ninutes. 3.Chis	selled fror	n 5.00 m to	5.50 m fr 1 hour. 4.Chiselled from 5	80 🕋 🧹	20 -
				elled from 9.70 m to groundwater strike a) minutes.	6.Chiselled	d from 13.80 m to 14.00 m for 1 hour	ve.	ρþ

APPENDIX VI CHEMICAL TESTING RESULTS

Ella Moss e3p Office 4 Heliport Business Park Eccles Liverpool Road Manchester M30 7RU

t: 0161 707 9612

e: EMoss@e3p.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number : 19-77078

Project / Site name:	Ryebank Chorlton	Samples received on:	11/12/2019
Your job number:	13533	Samples instructed on:	11/12/2019
Your order number:	34146	Analysis completed by:	19/12/2019
Report Issue Number:	1	Report issued on:	19/12/2019
Samples Analysed:	6 soil samples		

Signed: <

Zina Abdul Razzak Senior Quality Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :	soils leachates waters asbestos	 4 weeks from reporting 2 weeks from reporting 2 weeks from reporting 6 months from reporting
Excel copies of reports are only valid when accompanied by this PDF certificate.		

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				1389778	1389779	1389780	1389781	1389782
Sample Reference				TP101	TP113	TP119	TP120	TP125
Sample Number				None Supplied				
Depth (m)				0.10	0.10	0.10	2.10	0.10
Date Sampled				04/12/2019	05/12/2019	05/12/2019	05/12/2019	05/12/2019
Time Taken				None Supplied				
			2					
		융	Accreditation Status					
Analytical Parameter	Units	Limit of detection	creditati Status					
(Soil Analysis)	र्ष	to	tis tat					
			Ön					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	39	23	14	17	30
Total mass of sample received	kg	0.001	NONE	0.33	0.31	0.34	0.36	0.38
	Ng	0.001	NONE	0.55	0.51	0.51	0.50	0.50
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	_	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	iype %	0.001	ISO 17025	-	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-
General Inorganics		-						
pH - Automated	pH Units	N/A	MCERTS	-	-	-	10.3	-
Total Cyanide	mg/kg	1	MCERTS	< 1	2	120	2	< 1
Total Sulphate as SO ₄	mg/kg	50	MCERTS	-	-	-	1100	-
Water Soluble Sulphate as SO ₄ 16hr extraction (2:1) Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	2.5	MCERTS	-	-	-	250	-
Equivalent)	g/l	0.00125	MCERTS	_	_		0.13	_
Water Soluble SO4 16hr extraction (2:1 Leachate	9/1	0.00125	HEERIS				0.15	
Equivalent)	mg/l	1.25	MCERTS	-	-	-	125	-
Sulphide	mg/kg	1	MCERTS	-	-	-	2.3	-
Total Sulphur	mg/kg	50	MCERTS	-	-	-	1300	-
Total Organic Carbon (TOC)	%	0.1	MCERTS	-	-	-	-	-
Total Bhanala								
Total Phenols Total Phenols (monohydric)	mg/kg	1	MCERTS	-	_	_	< 1.0	-
	тіў/ку	1	MCERTS	-	-	-	< 1.0	-
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	0.54	< 0.05	< 0.05	-	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	11	-	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	0.35	< 0.05	2.4	-	< 0.05
Fluorene	mg/kg	0.05	MCERTS	0.39	< 0.05	17	-	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	3.1	0.81	150	-	3.1
Anthracene	mg/kg	0.05	MCERTS	0.90	0.25	46	-	0.90
Fluoranthene	mg/kg	0.05	MCERTS	5.1	1.7	150	-	5.8
Pyrene	mg/kg	0.05	MCERTS	5.2	1.8	130	-	5.7
Benzo(a)anthracene	mg/kg	0.05	MCERTS	2.4	0.91	44	-	2.5
Chrysene	mg/kg	0.05	MCERTS	2.3	1.0	37	-	2.6
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	3.0	1.1	50	-	3.3
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.98	0.59	15	-	1.2
Benzo(a)pyrene	mg/kg	0.05	MCERTS	2.5	1.1	45	-	2.8
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	1.3	0.51	30	-	1.5
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.44	0.20	7.2	-	0.42
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	1.5	0.58	25	-	1.7
Total PAH		0.0	MOTOTO	20.0	10.0	760	1 .	21.2
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	30.0	10.6	763	-	31.3

Lab Sample Number				1389778	1389779	1389780	1389781	1389782
Sample Reference			TP101	TP113	TP119	TP120	TP125	
Sample Number			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)		0.10	0.10	0.10	2.10	0.10		
Date Sampled		04/12/2019	05/12/2019	05/12/2019	05/12/2019	05/12/2019		
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	13	17	23	32	18
Barium (aqua regia extractable)	mg/kg	1	MCERTS	200	150	440	-	250
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.64	0.79	1.2	-	1.0
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.7	0.4	1.6	0.4	0.6
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	24	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	150	72	620	160	110
Lead (aqua regia extractable)	mg/kg	1	MCERTS	220	180	1000	680	230
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.5	0.7	1.4	1.0	0.9
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	14	17	27	33	23
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	16	21	32	-	28
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	320	130	1000	280	200

Petroleum Hydrocarbons

TPH (C5 - C6)	mg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	5.6	3.7	6.3	12	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	13	16	220	40	< 4.0
TPH (C16 - C21)	mg/kg	1	MCERTS	44	51	1700	140	15
TPH (C21 - C35)	mg/kg	1	MCERTS	110	110	1300	230	27
TPH (C35 - C40)	mg/kg	10	MCERTS	19	20	40	18	< 10
TPH Total C5 - C40	mg/kg	10	MCERTS	200	200	3300	460	43

Lab Sample Number				1389778	1389779	1389780	1389781	1389782
Sample Reference				TP101	TP113	TP119	TP120	TP125
Sample Number				None Supplied				
Depth (m)				0.10	0.10	0.10	2.10	0.10
Date Sampled Time Taken				04/12/2019 None Supplied	05/12/2019 None Supplied	05/12/2019 None Supplied	05/12/2019 None Supplied	05/12/2019 None Supplied
			r –	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs								
Chloromethane	µg/kg	1	ISO 17025	-	-	-	< 1.0	-
Chloroethane	µg/kg	1	NONE	-	-	-	< 1.0	-
Bromomethane	µg/kg	1	ISO 17025	-	-	-	< 1.0	-
Vinyl Chloride	µg/kg	1	NONE	-	-	-	< 1.0	-
Trichlorofluoromethane	µg/kg	1	NONE	-	-	-	< 1.0	-
1,1-Dichloroethene	µg/kg	1	NONE	-	-	-	< 1.0	-
1,1,2-Trichloro 1,2,2-Trifluoroethane Cis-1,2-dichloroethene	µg/kg	1	ISO 17025 MCERTS	-	-	-	< 1.0	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg µg/kg	1	MCERTS	-	-	-	< 1.0 < 1.0	-
1,1-Dichloroethane	µg/kg µg/kg	1	MCERTS	-	-	-	< 1.0	-
2,2-Dichloropropane	µg/kg	1	MCERTS	-	-	-	< 1.0	-
Trichloromethane	µg/kg	1	MCERTS	-	-	-	< 1.0	-
1,1,1-Trichloroethane	µg/kg	1	MCERTS	-	-	-	< 1.0	-
1,2-Dichloroethane	µg/kg	1	MCERTS	-	-	-	< 1.0	-
1,1-Dichloropropene	µg/kg	1	MCERTS	-	-	-	< 1.0	-
Trans-1,2-dichloroethene	µg/kg	1	NONE	-	-	-	< 1.0	-
Benzene	µg/kg	1	MCERTS	-	-	-	< 1.0	-
Tetrachloromethane 1,2-Dichloropropane	µg/kg	1	MCERTS MCERTS	-	-	-	< 1.0	-
Trichloroethene	µg/kg µg/kg	1	MCERTS	-	-	-	< 1.0	-
Dibromomethane	µg/kg	1	MCERTS	-	-	-	< 1.0	-
Bromodichloromethane	µg/kg	1	MCERTS	-	-	-	< 1.0	-
Cis-1,3-dichloropropene	µg/kg	1	ISO 17025	-	-	-	< 1.0	-
Trans-1,3-dichloropropene	µg/kg	1	ISO 17025	-	-	-	< 1.0	-
Toluene	µg/kg	1	MCERTS	-	-	-	< 1.0	-
1,1,2-Trichloroethane	µg/kg	1	MCERTS	-	-	-	< 1.0	-
1,3-Dichloropropane	µg/kg	1	ISO 17025	-	-	-	< 1.0	-
Dibromochloromethane	µg/kg	1	ISO 17025 NONE	-	-	-	< 1.0	-
Tetrachloroethene 1,2-Dibromoethane	µg/kg µg/kg	1	ISO 17025	-	-	-	< 1.0 < 1.0	-
Chlorobenzene	µg/kg µg/kg	1	MCERTS	-	-	-	< 1.0	-
1,1,1,2-Tetrachloroethane	µg/kg	1	MCERTS	-	-	-	< 1.0	-
Ethylbenzene	µg/kg	1	MCERTS	-	-	-	< 1.0	-
p & m-Xylene	µg/kg	1	MCERTS	-	-	-	< 1.0	-
Styrene	µg/kg	1	MCERTS	-	-	-	< 1.0	-
Tribromomethane	µg/kg	1	NONE	-	-	-	< 1.0	-
o-Xylene	µg/kg	1	MCERTS	-	-	-	< 1.0	-
1,1,2,2-Tetrachloroethane	µg/kg	1	MCERTS	-	-	-	< 1.0	-
Isopropylbenzene	µg/kg	1	MCERTS	-	-	-	< 1.0	-
Bromobenzene n-Propylbenzene	µg/kg	1	MCERTS ISO 17025	-	-	-	< 1.0	-
2-Chlorotoluene	µg/kg µg/kg	1	MCERTS		-	-	< 1.0	<u> </u>
4-Chlorotoluene	µg/kg µg/kg	1	MCERTS	-	-	_	< 1.0	_
1,3,5-Trimethylbenzene	µg/kg	1	ISO 17025	-	-	-	< 1.0	-
tert-Butylbenzene	µg/kg	1	MCERTS	-	-	-	< 1.0	-
1,2,4-Trimethylbenzene	µg/kg	1	ISO 17025	-	-	-	< 1.0	-
sec-Butylbenzene	µg/kg	1	MCERTS	-	-	-	< 1.0	-
1,3-Dichlorobenzene	µg/kg	1	ISO 17025	-	-	-	< 1.0	-
p-Isopropyltoluene	µg/kg	1	ISO 17025	-	-	-	< 1.0	-
1,2-Dichlorobenzene	µg/kg	1	MCERTS	-	-	-	< 1.0	-
1,4-Dichlorobenzene	µg/kg	1	MCERTS	-	-	-	< 1.0	-
Butylbenzene 1,2-Dibromo-3-chloropropane	µg/kg µg/kg	1	MCERTS ISO 17025	-	-	-	< 1.0 < 1.0	-
	µg/kg µg/kg	1	MCERTS	-	-	-	< 1.0	-
1.2.4-Trichlorobenzene								
1,2,4-Trichlorobenzene Hexachlorobutadiene	µg/kg µg/kg	1	MCERTS	-	-	-	< 1.0	-

Lab Sample Number				1389778	1389779	1389780	1389781	1389782
Sample Reference				TP101	TP113	TP119	TP120	TP125
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10 04/12/2019	0.10 05/12/2019	0.10 05/12/2019	2.10 05/12/2019	0.10 05/12/2019
Date Sampled Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
				None Supplied	None Supplied	None Supplied	Hone Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
		ă T	tion					
SVOCs								
Aniline	mg/kg	0.1	NONE	-	-	-	< 0.1	-
Phenol	mg/kg	0.2	ISO 17025	-	-	-	< 0.2	-
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-	-	< 0.1	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	-	< 0.2	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	< 0.2	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	-	< 0.1	-
1,4-Dichlorobenzene Bis(2-chloroisopropyl)ether	mg/kg mg/kg	0.2	MCERTS MCERTS	-	-	-	< 0.2 < 0.1	-
2-Methylphenol	mg/kg	0.1	MCERTS	-	-	-	< 0.1	-
Hexachloroethane	mg/kg	0.05	MCERTS	-	-	-	< 0.05	-
Nitrobenzene	mg/kg	0.3	MCERTS	-	-	-	< 0.3	-
4-Methylphenol	mg/kg	0.2	NONE	-	-	-	< 0.2	-
Isophorone	mg/kg	0.2	MCERTS	-	-	-	< 0.2	-
2-Nitrophenol	mg/kg	0.3	MCERTS	-	-	-	< 0.3	-
2,4-Dimethylphenol Bis(2-chloroethoxy)methane	mg/kg mg/kg	0.3	MCERTS MCERTS	-	-	-	< 0.3 < 0.3	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	-	-	< 0.3	-
Naphthalene	mg/kg	0.05	MCERTS	-	-	-	0.61	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	-	-	< 0.3	-
4-Chloroaniline	mg/kg	0.1	NONE	-	-	-	< 0.1	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-	-	< 0.1	-
4-Chloro-3-methylphenol 2,4,6-Trichlorophenol	mg/kg	0.1	NONE	-	-	-	< 0.1	-
2,4,5-Trichlorophenol	mg/kg mg/kg	0.1	MCERTS MCERTS	-	-	-	< 0.1 < 0.2	-
2-Methylnaphthalene	mg/kg	0.2	NONE	-	-	-	0.7	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	-	-	< 0.1	-
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-	-	< 0.1	-
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	-	-	< 0.1	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	-	0.72	-
Acenaphthene	mg/kg	0.05	MCERTS	-	-	-	0.94	-
2,4-Dinitrotoluene Dibenzofuran	mg/kg mg/kg	0.2	MCERTS MCERTS	-	-	-	< 0.2 0.5	-
4-Chlorophenyl phenyl ether	mg/kg	0.2	ISO 17025	-	-	-	< 0.3	-
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-	-	< 0.2	-
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-	-	< 0.2	-
Fluorene	mg/kg	0.05	MCERTS	-	-	-	1.5	-
Azobenzene	mg/kg	0.3	MCERTS	-	-	-	< 0.3	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-		< 0.2	-
Hexachlorobenzene Phenanthrene	mg/kg mg/kg	0.3	MCERTS MCERTS	-	-	-	< 0.3	-
Anthracene	mg/kg	0.05	MCERTS	-	-	-	2.0	-
Carbazole	mg/kg	0.3	MCERTS	-	-	-	0.4	-
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	-	-	< 0.2	-
Anthraquinone	mg/kg	0.3	MCERTS	-	-	-	< 0.3	-
Fluoranthene	mg/kg	0.05	MCERTS	-	-	-	14	-
Pyrene Butyl benzyl phthalate	mg/kg	0.05	MCERTS ISO 17025	-	-	-	14	-
Butyl benzyl phthalate Benzo(a)anthracene	mg/kg mg/kg	0.3	ISO 17025 MCERTS	-	-	-	< 0.3 6.8	-
Chrysene	mg/kg mg/kg	0.05	MCERTS	-	-	-	5.5	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	6.6	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	2.5	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	-	5.6	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-	2.8	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-	1.0	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	-	3.6	-

Lab Sample Number				1389783				
Sample Reference				WS110		1	1	
Sample Number				None Supplied			1	
Depth (m)				0.50				
Date Sampled				05/12/2019				
Time Taken				None Supplied				
	1			None Supplied			1	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
			ā					
Stone Content	%	0.1	NONE	< 0.1				
Moisture Content	%	N/A	NONE	11				
Total mass of sample received	kg	0.001	NONE	0.36				
							-	
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	Chrysotile				
Asbestos in Soil	Туре	N/A	ISO 17025	Detected				
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	< 0.001				
Asbestos Quantification Total	%	0.001	ISO 17025	< 0.001				
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	-				
Total Cyanide	mg/kg	1	MCERTS	-				
Total Sulphate as SO ₄	mg/kg	50	MCERTS	-				
Water Soluble Sulphate as SO₄ 16hr extraction (2:1)	mg/kg	2.5	MCERTS	-				
Water Soluble SO4 16hr extraction (2:1 Leachate	iiig/iig	210	HOLITO					
Equivalent) Water Soluble SO4 16hr extraction (2:1 Leachate	g/l	0.00125	MCERTS	-				
Equivalent)	mg/l	1.25	MCERTS	-				
Sulphide	mg/kg	1	MCERTS	-				
Total Sulphur	mg/kg	50	MCERTS	-				
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.6				
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	-				
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05				
Acenaphthylene	mg/kg	0.05	MCERTS	0.32				
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05				
Fluorene	mg/kg	0.05	MCERTS	0.24				
Phenanthrene	mg/kg	0.05	MCERTS	1.3				
Anthracene	mg/kg	0.05	MCERTS	0.36				
Fluoranthene	mg/kg	0.05	MCERTS	1.7				
Pyrene	mg/kg	0.05	MCERTS	1.5				
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1.2				
Chrysene	mg/kg	0.05	MCERTS	0.82				
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.77				
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.50				
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.66				
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.33				
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05				
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.40				
			-		-	-	-	-
Total PAH		0.0	MOEDTO	10.0		I	i	i
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	10.0		1	1	1

Lab Sample Number				1389783		
Sample Reference				WS110		
Sample Number				None Supplied		
Depth (m)				0.50		
Date Sampled				05/12/2019		
Time Taken		None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Heavy Metals / Metalloids						
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-		
Barium (aqua regia extractable)	mg/kg	1	MCERTS	-		
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	-		
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-		
Chromium (hexavalent)	mg/kg	4	MCERTS	-		
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-		
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-		
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-		
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-		
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-		
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-		
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	-		
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	-		

Petroleum Hydrocarbons

TPH (C5 - C6)	mg/kg	1	NONE	< 1.0		
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1		
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1		
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0		
TPH (C12 - C16)	mg/kg	4	MCERTS	8.2		
TPH (C16 - C21)	mg/kg	1	MCERTS	27		
TPH (C21 - C35)	mg/kg	1	MCERTS	44		
TPH (C35 - C40)	mg/kg	10	MCERTS	< 10		
TPH Total C5 - C40	mg/kg	10	MCERTS	81		

Lab Sample Number				1389783			
Sample Reference				WS110			
Sample Number				None Supplied			
Depth (m)				0.50			
Date Sampled				05/12/2019			
Time Taken				None Supplied			
		-	A				
Analytical Parameter	ç	Limit of detection	Accreditation Status				
(Soil Analysis)	Units	nito	dita atus				
. , ,		on f	* tion				
VOCs			-				
Chloromethane	µg/kg	1	ISO 17025	-			
Chloroethane	µg/kg µg/kg	1	130 17023 NONE	-			
Bromomethane	µg/kg	1	ISO 17025	-			
Vinyl Chloride	µg/kg	1	NONE	-			
Trichlorofluoromethane	µg/kg	1	NONE	-			
1,1-Dichloroethene	µg/kg	1	NONE	-			
1,1,2-Trichloro 1,2,2-Trifluoroethane	µg/kg	1	ISO 17025	-			
Cis-1,2-dichloroethene	µg/kg	1	MCERTS MCERTS	-			
MTBE (Methyl Tertiary Butyl Ether) 1,1-Dichloroethane	µg/kg µg/kg	1	MCERTS	-			
2,2-Dichloropropane	µg/kg µg/kg	1	MCERTS	-			
Trichloromethane	µg/kg	1	MCERTS	-			
1,1,1-Trichloroethane	µg/kg	1	MCERTS	-			
1,2-Dichloroethane	µg/kg	1	MCERTS	-			
1,1-Dichloropropene	µg/kg	1	MCERTS	-			
Trans-1,2-dichloroethene	µg/kg	1	NONE	-			
Benzene Tetrachloromethane	µg/kg	1	MCERTS MCERTS	-			
1,2-Dichloropropane	µg/kg µg/kg	1	MCERTS	-	-	-	
Trichloroethene	µg/kg µg/kg	1	MCERTS	-			
Dibromomethane	µg/kg	1	MCERTS	-			
Bromodichloromethane	µg/kg	1	MCERTS	-			
Cis-1,3-dichloropropene	µg/kg	1	ISO 17025	-			
Trans-1,3-dichloropropene	µg/kg	1	ISO 17025	-			
Toluene	µg/kg	1	MCERTS	-			
1,1,2-Trichloroethane 1,3-Dichloropropane	µg/kg	1	MCERTS ISO 17025	-			
Dibromochloromethane	µg/kg µg/kg	1	ISO 17025 ISO 17025	-	-	-	
Tetrachloroethene	µg/kg	1	NONE	-			
1,2-Dibromoethane	µg/kg	1	ISO 17025	-			
Chlorobenzene	µg/kg	1	MCERTS	-			
1,1,1,2-Tetrachloroethane	µg/kg	1	MCERTS	-			
Ethylbenzene	µg/kg	1	MCERTS	-			
p & m-Xylene	µg/kg	1	MCERTS	-			
Styrene Tribromomethane	µg/kg	1	MCERTS NONE	-			
o-Xylene	μg/kg μg/kg	1	MCERTS	-			
1,1,2,2-Tetrachloroethane	µg/kg µg/kg	1	MCERTS	-			
Isopropylbenzene	µg/kg	1	MCERTS	-			
Bromobenzene	µg/kg	1	MCERTS	-			
n-Propylbenzene	µg/kg	1	ISO 17025	-			
2-Chlorotoluene	µg/kg	1	MCERTS	-			
4-Chlorotoluene	µg/kg	1	MCERTS ISO 17025	-			
1,3,5-Trimethylbenzene tert-Butylbenzene	μg/kg μg/kg	1	MCERTS	-			
1,2,4-Trimethylbenzene	μg/kg μg/kg	1	ISO 17025	-			
sec-Butylbenzene	µg/kg	1	MCERTS	-			
1,3-Dichlorobenzene	µg/kg	1	ISO 17025	-			
p-Isopropyltoluene	µg/kg	1	ISO 17025	-			
1,2-Dichlorobenzene	µg/kg	1	MCERTS	-			
1,4-Dichlorobenzene	µg/kg	1	MCERTS	-			
Butylbenzene	µg/kg	1	MCERTS	-			
1,2-Dibromo-3-chloropropane	µg/kg	1	ISO 17025	-			
1,2,4-Trichlorobenzene Hexachlorobutadiene	μg/kg μg/kg	1	MCERTS MCERTS	-			
1,2,3-Trichlorobenzene	μg/kg μg/kg	1	ISO 17025	-			
	P9/N9		100 1/020				

Lab Sample Number				1389783			
Sample Reference				WS110			
Sample Number				None Supplied			
Depth (m)				0.50			
Date Sampled				05/12/2019			
Time Taken				None Supplied			
		<u>م</u>	Accreditation Status				
Analytical Parameter	Units	Limit of detection	Sta				
(Soil Analysis)	ß	ctio f	itat				
		3 "	ion				
SVOCs							
Aniline	mg/kg	0.1	NONE	-			
Phenol	mg/kg	0.2	ISO 17025	-			
2-Chlorophenol	mg/kg	0.1	MCERTS	-	 		
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-			
1,3-Dichlorobenzene 1,2-Dichlorobenzene	mg/kg mg/kg	0.2	MCERTS MCERTS	-			
1,2-Dichlorobenzene	mg/kg mg/kg	0.1	MCERTS	-			
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-			
2-Methylphenol	mg/kg	0.3	MCERTS	-			
Hexachloroethane	mg/kg	0.05	MCERTS	-			
Nitrobenzene	mg/kg	0.3	MCERTS	-	 		
4-Methylphenol	mg/kg	0.2	NONE	-	 		
Isophorone 2-Nitrophenol	mg/kg mg/kg	0.2	MCERTS MCERTS	-			
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-			
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-			
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-			
Naphthalene	mg/kg	0.05	MCERTS	-			
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-			
4-Chloroaniline	mg/kg	0.1	NONE	-			
Hexachlorobutadiene 4-Chloro-3-methylphenol	mg/kg mg/kg	0.1	MCERTS NONE	-			
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-			
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-			
2-Methylnaphthalene	mg/kg	0.1	NONE	-			
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-			
Dimethylphthalate	mg/kg	0.1	MCERTS	-			
2,6-Dinitrotoluene Acenaphthylene	mg/kg mg/kg	0.1	MCERTS MCERTS	-			
Acenaphthene	mg/kg	0.05	MCERTS	-			
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-			
Dibenzofuran	mg/kg	0.2	MCERTS	-			
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-			
Diethyl phthalate	mg/kg	0.2	MCERTS	-			
4-Nitroaniline	mg/kg	0.2	MCERTS	-			
Fluorene Azobenzene	mg/kg mg/kg	0.05	MCERTS MCERTS	-	 		
Bromophenyl phenyl ether	mg/kg mg/kg	0.3	MCERTS	-			
Hexachlorobenzene	mg/kg	0.2	MCERTS	-			
Phenanthrene	mg/kg	0.05	MCERTS	-	 		
Anthracene	mg/kg	0.05	MCERTS	-			
Carbazole	mg/kg	0.3	MCERTS	-	 		
Dibutyl phthalate	mg/kg	0.2	MCERTS	-			
Anthraquinone Fluoranthene	mg/kg mg/kg	0.3	MCERTS MCERTS	-			
Pyrene	mg/kg	0.05	MCERTS	-			
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-			
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-			
Chrysene	mg/kg	0.05	MCERTS	-			
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	 		
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-			
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg	0.05	MCERTS MCERTS	-			
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-			
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-			
	~ ~		-			-	-

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006 based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1389783	WS110	0.50	118	Loose Fibres	Chrysotile	< 0.001	< 0.001

Both Qualitative and Quantitative Analyses are UKAS accredited.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Project / Site name: Ryebank Chorlton

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1389778	TP101	None Supplied	0.10	Brown loam and clay with vegetation.
1389779	TP113	None Supplied	0.10	Brown loam with vegetation.
1389780	TP119	None Supplied	0.10	Brown loam and sand with gravel.
1389781	TP120	None Supplied	2.10	Brown clay and sand with clinker.
1389782	TP125	None Supplied	0.10	Brown loam and clay with vegetation.
1389783	WS110	None Supplied	0.50	Brown sand with clinker.

Project / Site name: Ryebank Chorlton

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In-house method based on BS1377 Part 2, 1990, Classification tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	MCERTS
Total organic carbon (Automated) in Determination of organic matter in soil by oxidising soil with potassium dichromate followed by titration with iron (II) sulphate.		In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests""	L009-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, and MEWAM 2006 Methods for the Determination of Metals in Soil	L038-PL	D	MCERTS

Iss No 19-77078-1 Ryebank Chorlton 13533

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: Ryebank Chorlton

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample Deviation Report

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
TP101		S	19-77078	1389778	С	Total cyanide in soil	L080-PL	С

Ella Moss e3p Office 4 Heliport Business Park Eccles Liverpool Road Manchester M30 7RU

t: 0161 707 9612

e: EMoss@e3p.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number : 19-76421

Replaces Analytical Report Number : 19-76421, issue no. 1

Project / Site name:	Ryebank Chorlton	Samples received on:	06/12/2019
Your job number:	13533	Samples instructed on:	09/12/2019
Your order number:	34146	Analysis completed by:	16/12/2019
Report Issue Number:	2	Report issued on:	13/01/2020
Samples Analysed:	4 leachate samples - 11 soil samples		

Signed: <

Zina Abdul Razzak Senior Quality Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :	soils leachates waters asbestos	 4 weeks from reporting 2 weeks from reporting 2 weeks from reporting 6 months from reporting
Excel copies of reports are only valid when accompanied by this PDF certificate.		

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				1386182	1386183	1386184	1386186	1386187
Sample Reference				TP103	TP105	TP111	TP115	TP116
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.30	0.10	1.20	1.60	1.50
Date Sampled				04/12/2019	04/12/2019	05/12/2019	05/12/2019	05/12/2019
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
			1	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	13	25	33	23	14
Total mass of sample received	kg	0.001	NONE	0.39	0.44	0.30	0.35	0.39
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-
General Inorganics				1	•	1		
pH - Automated	pH Units	N/A	MCERTS	-	9.0	-	12.3	11.2
Total Cyanide	mg/kg	1	MCERTS	1	< 1	< 1	< 1	1
Total Sulphate as SO ₄	mg/kg	50	MCERTS	-	650	-	3200	770
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	g/l	0.00125	MCERTS	-	0.046	-	0.15	0.11
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/kg	2.5	MCERTS	-	91	-	300	220
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	ma/l	1.25	MCERTS	-	45.6	-	152	111
Sulphide	mg/kg	1	MCERTS	-	7.0	-	91	36
Total Sulphur	mg/kg	50	MCERTS	-	610	-	1600	1100
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.8	-	-	-	2.4
Total Phenois								
Total Phenois Total Phenois (monohydric)	mg/kg	1	MCERTS	-	< 1.0	-	1.2	< 1.0
	iiig/kg	1	MCERTS	-	< 1.0	-	1.2	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	0.35	< 0.05	< 0.05	< 0.05	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	-
Acenaphthene	mg/kg	0.05	MCERTS	0.59	0.76	< 0.05	< 0.05	-
Fluorene	mg/kg	0.05	MCERTS	0.59	0.53	< 0.05	< 0.05	-
Phenanthrene	mg/kg	0.05	MCERTS	4.0	5.1	< 0.05	< 0.05	-
Anthracene	mg/kg	0.05	MCERTS	0.93	1.0	< 0.05	< 0.05	-
Fluoranthene	mg/kg	0.05	MCERTS	5.8	5.9	< 0.05	< 0.05	-
Pyrene	mg/kg	0.05	MCERTS	5.2	5.8	< 0.05	< 0.05	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	3.1	3.4	< 0.05	< 0.05	-
Chrysene	mg/kg	0.05	MCERTS	2.8	2.8	< 0.05	< 0.05	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	3.0	2.8	< 0.05	< 0.05	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	1.5	1.5	< 0.05	< 0.05	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	2.7	2.7	< 0.05	< 0.05	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	1.3	1.2	< 0.05	< 0.05	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.42	0.39	< 0.05	< 0.05	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	1.5	1.5	< 0.05	< 0.05	-
Total PAH Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	33.7	35.4	< 0.80	< 0.80	· · · · · · · · · · · · · · · · · · ·
Specialeu Toldi EPA-10 PARS	шу/кд	0.0	MUCERIS	33.7)), 1	< 0.00	< 0.00	-

Lab Sample Number				1386182	1386183	1386184	1386186	1386187
Sample Reference				TP103	TP105	TP111	TP115	TP116
Sample Number				None Supplied				
Depth (m)				1.30	0.10	1.20	1.60	1.50
Date Sampled				04/12/2019	04/12/2019	05/12/2019	05/12/2019	05/12/2019
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	15	21	< 1.0	< 1.0	20
Barium (aqua regia extractable)	mg/kg	1	MCERTS	290	-	12	-	-
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.2	-	0.67	-	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.4	0.8	< 0.2	< 0.2	1.8
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	36	-	26	23
Copper (aqua regia extractable)	mg/kg	1	MCERTS	99	120	10	14	160
Lead (aqua regia extractable)	mg/kg	1	MCERTS	180	820	7.4	4.8	180
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.3	0.6	< 0.3	< 0.3	2.8
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	21	23	3.9	4.6	40
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	1.7
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	32	-	5.7	-	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	230	310	6.0	58	530

Monoaromatics & Oxygenates

Benzene	µg/kg	1	MCERTS	-	-	-	-	< 1.0
Toluene	µg/kg	1	MCERTS	-	-	-	-	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	-	-	-	-	< 1.0
p & m-xylene	µg/kg	1	MCERTS	-	-	-	-	< 1.0
o-xylene	µg/kg	1	MCERTS	-	-	-	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	-	-	-	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	-	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-	8.1
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-	-	-	35
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-	-	-	67
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	-	110
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	-	7.9
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-	200
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	-	-	-	1100
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	-	-	-	910
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	-	2200

TPH (C5 - C6)	mg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	-
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	-
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	-
TPH (C10 - C12)	mg/kg	2	MCERTS	40	3.8	< 2.0	< 2.0	-
TPH (C12 - C16)	mg/kg	4	MCERTS	21	14	< 4.0	< 4.0	-
TPH (C16 - C21)	mg/kg	1	MCERTS	67	47	< 1.0	10	-
TPH (C21 - C35)	mg/kg	1	MCERTS	170	110	< 1.0	78	-
TPH (C35 - C40)	mg/kg	10	MCERTS	42	22	< 10	< 10	-
TPH Total C5 - C40	mg/kg	10	MCERTS	390	200	< 10	91	-

Lab Sample Number				1386182	1386183	1386184	1386186	1386187
Sample Reference				TP103	TP105	TP111	TP115	TP116
Sample Number				None Supplied				
Depth (m)				1.30	0.10	1.20	1.60	1.50
Date Sampled				04/12/2019	04/12/2019	05/12/2019	05/12/2019	05/12/2019
Time Taken	-	1	1	None Supplied				
		۵	Accreditation Status					
Analytical Parameter	Units	Limit of detection	Sta					
(Soil Analysis)	ង	Cti c	litat					
		57	tion					
VOCs								
Chloromethane	µg/kg	1	ISO 17025	-	-	-	-	< 1.0
Chloroethane	µg/kg	1	NONE	-	-	-	-	< 1.0
Bromomethane	µg/kg	1	ISO 17025	-	-	-	-	< 1.0
Vinyl Chloride	µg/kg	1	NONE	-	-	-	-	< 1.0
Trichlorofluoromethane	µg/kg	1	NONE	-	-	-	-	< 1.0
1,1-Dichloroethene	µg/kg	1	NONE	-	-	-	-	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	µg/kg	1	ISO 17025	-	-	-	-	< 1.0
Cis-1,2-dichloroethene	µg/kg	1	MCERTS	-	-	-	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether) 1,1-Dichloroethane	µg/kg	1	MCERTS MCERTS	-	-	-	-	< 1.0
2,2-Dichloropropane	μg/kg μg/kg	1	MCERTS	-	-	-	-	< 1.0
Trichloromethane	µg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1,1-Trichloroethane	µg/kg	1	MCERTS	-	-	-	-	< 1.0
1,2-Dichloroethane	µg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1-Dichloropropene	µg/kg	1	MCERTS	-	-	-	-	< 1.0
Trans-1,2-dichloroethene	µg/kg	1	NONE	-	-	-	-	< 1.0
Benzene	µg/kg	1	MCERTS	-	-	-	-	< 1.0
Tetrachloromethane	µg/kg	1	MCERTS	-	-	-	-	< 1.0
1,2-Dichloropropane	µg/kg	1	MCERTS	-	-	-	-	< 1.0
Trichloroethene	µg/kg	1	MCERTS MCERTS	-	-	-	-	< 1.0
Dibromomethane Bromodichloromethane	μg/kg μg/kg	1	MCERTS	-	-	-	-	< 1.0
Cis-1,3-dichloropropene	µg/kg µg/kg	1	ISO 17025	-	-	-	-	< 1.0
Trans-1,3-dichloropropene	µg/kg	1	ISO 17025	-	-	-	-	< 1.0
Toluene	µg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1,2-Trichloroethane	µg/kg	1	MCERTS	-	-	-	-	< 1.0
1,3-Dichloropropane	µg/kg	1	ISO 17025	-	-	-	-	< 1.0
Dibromochloromethane	µg/kg	1	ISO 17025	-	-	-	-	< 1.0
Tetrachloroethene	µg/kg	1	NONE	-	-	-	-	< 1.0
1,2-Dibromoethane	µg/kg	1	ISO 17025	-	-	-	-	< 1.0
Chlorobenzene	µg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1,1,2-Tetrachloroethane Ethylbenzene	µg/kg	1	MCERTS	-	-	-	-	< 1.0
p & m-Xylene	μg/kg μg/kg	1	MCERTS MCERTS	-	-	-	-	< 1.0 < 1.0
Styrene	µg/kg µg/kg	1	MCERTS		-	-	-	< 1.0
Tribromomethane	µg/kg	1	NONE	-	-	-	-	< 1.0
o-Xylene	µg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1,2,2-Tetrachloroethane	µg/kg	1	MCERTS	-	-	-	-	< 1.0
Isopropylbenzene	µg/kg	1	MCERTS	-	-	-	-	< 1.0
Bromobenzene	µg/kg	1	MCERTS	-	-	-	-	< 1.0
n-Propylbenzene	µg/kg	1	ISO 17025	-	-	-	-	< 1.0
2-Chlorotoluene	µg/kg	1	MCERTS	-	-	-	-	< 1.0
4-Chlorotoluene	µg/kg	1	MCERTS	-	-	-	-	< 1.0
1,3,5-Trimethylbenzene tert-Butylbenzene	µg/kg	1	ISO 17025 MCERTS	-	-	-	-	< 1.0 < 1.0
1,2,4-Trimethylbenzene	μg/kg μg/kg	1	ISO 17025	-	-	-	-	< 1.0
sec-Butylbenzene	μg/kg μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,3-Dichlorobenzene	µg/kg	1	ISO 17025	-	-	-	-	< 1.0
p-Isopropyltoluene	µg/kg	1	ISO 17025	-	-	-	-	< 1.0
1,2-Dichlorobenzene	µg/kg	1	MCERTS	-	-	-	-	< 1.0
1,4-Dichlorobenzene	µg/kg	1	MCERTS	-	-	-	-	< 1.0
Butylbenzene	µg/kg	1	MCERTS	-	-	-	-	< 1.0
1,2-Dibromo-3-chloropropane	µg/kg	1	ISO 17025	-	-	-	-	< 1.0
1,2,4-Trichlorobenzene	µg/kg	1	MCERTS	-	-	-	-	< 1.0
Hexachlorobutadiene	µg/kg	1	MCERTS	-	-	-	-	< 1.0
1,2,3-Trichlorobenzene	µg/kg	1	ISO 17025	-	-	-	-	< 1.0

Lab Sample Number				1386182	1386183	1386184	1386186	1386187
Sample Reference				TP103	TP105	TP111	TP115	TP116
Sample Number				None Supplied				
Depth (m)				1.30	0.10	1.20	1.60	1.50
Date Sampled				04/12/2019	04/12/2019	05/12/2019	05/12/2019	05/12/2019
Time Taken			-	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
SVOCs			5					
Aniline	mg/kg	0.1	NONE	-	_	-	_	< 0.1
Phenol	mg/kg	0.1	ISO 17025	-	-	-	-	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
Bis(2-chloroisopropyl)ether 2-Methylphenol	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
2-Metnyiphenoi Hexachloroethane	mg/kg mg/kg	0.3	MCERTS MCERTS	-	-	-	-	< 0.3 < 0.05
Nitrobenzene	mg/kg	0.03	MCERTS	-	-	-	-	< 0.3
4-Methylphenol	mg/kg	0.2	NONE	-	-	-	-	< 0.2
Isophorone	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
2-Nitrophenol	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
Naphthalene 2,4-Dichlorophenol	mg/kg	0.05	MCERTS MCERTS	-	-	-	-	< 0.05 < 0.3
4-Chloroaniline	mg/kg mg/kg	0.3	NONE		-	-	-	< 0.3
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-	-	-	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-	-	-	0.5
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
Dimethylphthalate 2,6-Dinitrotoluene	mg/kg	0.1	MCERTS MCERTS	-	-	-		< 0.1 < 0.1
Acenaphthylene	mg/kg mg/kg	0.05	MCERTS	-	-	-	-	0.62
Acenaphthene	mg/kg	0.05	MCERTS	-	-	-	-	5.7
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
Dibenzofuran	mg/kg	0.2	MCERTS	-	-	-	-	3.6
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	-	-	-	< 0.3
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
Fluorene Azobenzene	mg/kg	0.05	MCERTS MCERTS	-	-	-		9.1 < 0.3
Azobenzene Bromophenyl phenyl ether	mg/kg mg/kg	0.3	MCERTS	-	-	-		< 0.3
Hexachlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
Phenanthrene	mg/kg	0.05	MCERTS	-	-	-	-	55
Anthracene	mg/kg	0.05	MCERTS	-	-	-	-	17
Carbazole	mg/kg	0.3	MCERTS	-	-	-	-	4.1
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
Anthraquinone	mg/kg	0.3	MCERTS	-	-	-	-	1.8
Fluoranthene	mg/kg	0.05	MCERTS MCERTS	-	-	-	-	53 42
Pyrene Butyl benzyl phthalate	mg/kg mg/kg	0.05	ISO 17025	-	-	-	-	< 0.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	-	-	19
Chrysene	mg/kg	0.05	MCERTS	-	-	-	-	16
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	14
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	6.9
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	13
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	7.5
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-	-	2.1
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	-	-	7.9

* This sample was reported unsuitable for analysis due to high level of asbestos contamination and the laboratory was unable to remove all of the fibres.

Lab Sample Number				1386189	1386190	1386191*	1386192	1386193
Sample Reference				TP127	TP128	WS101	WS102	WS105
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.80	0.80	1.80	3.20	3.80
Date Sampled				05/12/2019	05/12/2019	04/12/2019	04/12/2019	04/12/2019
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
	T	1	1	None Supplied	None Supplied	None Supplied	None Supplied	None Supplieu
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	13	13	23	22	36
Total mass of sample received	kg	0.001	NONE	0.39	0.38	0.30	0.41	0.31
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	Chrysotile & Amosite	Chrysotile	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Detected	Detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	1.183	0.036	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	1.18	0.036	-
	•							
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	-	-	U/S	9.0	12.4
Total Cyanide	mg/kg	1	MCERTS	1	6	2	1	3
Total Sulphate as SO ₄	mg/kg	50	MCERTS	-	-	U/S	4900	3500
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	g/l	0.00125	MCERTS	-	-	U/S	0.97	0.055
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/kg	2.5	MCERTS	-	-	U/S	1900	110
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/l	1.25	MCERTS	-	-	U/S	966	55.3
Sulphide	mg/kg	1	MCERTS	-	-	U/S	470	19
Total Sulphur	mg/kg	50	MCERTS	-	-	U/S	17000	1600
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.9	-	U/S	3.2	-
Total Phenois	•				•			
Total Phenols (monohydric)	mg/kg	1	MCERTS	-		< 1.0	< 1.0	47
Total Phenois (mononyunc)	тту/ку	1	PICERIS	-	-	< 1.0	< 1.0	47
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	-	0.45	-	-	0.61
Acenaphthylene	mg/kg	0.05	MCERTS	-	0.47	-	-	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	-	2.8	-	-	< 0.05
Fluorene	mg/kg	0.05	MCERTS	-	2.7	-	-	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	-	19	-	-	0.23
Anthracene	mg/kg	0.05	MCERTS	-	5.4	-	-	< 0.05
Fluoranthene	mg/kg mg/kg	0.05	MCERTS		25	-	-	0.33
		0.05	MCERTS		25	-	-	0.33
Pyrene Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	10	-	-	< 0.05
	mg/kg	0.05	MCERTS	-	8.7	-	-	< 0.05
Chrysene Ronza(h)flueranthana	mg/kg			-		-	-	
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	11	-		< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS		3.9		-	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	8.9	-	-	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	3.8	-	-	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	1.1	-	-	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	4.4	-	-	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	-	127	-	-	1.46

Lab Sample Number				1386189	1386190	1386191*	1386192	1386193
Sample Reference				TP127	TP128	WS101	WS102	WS105
Sample Number				None Supplied				
Depth (m)				1.80	0.80	1.80	3.20	3.80
Date Sampled				05/12/2019	05/12/2019	04/12/2019	04/12/2019	04/12/2019
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	14	18	U/S	34	1.4
Barium (aqua regia extractable)	mg/kg	1	MCERTS	350	380	-	-	-
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.1	0.98	-	-	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.5	1.2	U/S	3.3	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	-	U/S	43	6.0
Copper (aqua regia extractable)	mg/kg	1	MCERTS	130	2600	U/S	400	14
Lead (aqua regia extractable)	mg/kg	1	MCERTS	230	460	U/S	1100	16
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	0.6	U/S	1.0	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	22	25	U/S	58	6.2
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	1.1	U/S	2.1	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	34	28	-	-	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	260	760	U/S	1600	23

Monoaromatics & Oxygenates

Benzene	µg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
Toluene	µg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
p & m-xylene	µg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
o-xylene	µg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	-	-	< 0.001	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	-	< 0.001	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	-	< 0.001	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	2.5	-	-	13	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	11	-	-	20	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	25	-	-	76	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	49	-	-	450	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	88	-	-	560	-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	-	-	< 0.001	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	-	< 0.001	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	-	< 0.001	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	5.5	-	-	6.2	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	41	-	-	34	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	110	-	-	180	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	250	-	-	510	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	410	-	-	730	-

TPH (C5 - C6)	mg/kg	1	NONE	-	< 1.0	< 1.0	-	< 1.0
TPH (C6 - C8)	mg/kg	0.1	MCERTS	-	< 0.1	< 0.1	-	< 0.1
TPH (C8 - C10)	mg/kg	0.1	MCERTS	-	< 0.1	< 0.1	-	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	-	2.3	U/S	-	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	-	22	U/S	-	< 4.0
TPH (C16 - C21)	mg/kg	1	MCERTS	-	150	U/S	-	7.9
TPH (C21 - C35)	mg/kg	1	MCERTS	-	460	U/S	-	85
TPH (C35 - C40)	mg/kg	10	MCERTS	-	47	U/S	-	< 10
TPH Total C5 - C40	mg/kg	10	MCERTS	-	680	< 10	-	95

Sample Reference Sample Number Depth (m) Date Sampled Time Taken				TP127 None Supplied	TP128 None Supplied	WS101 None Supplied	WS102	WS105
Depth (m) Date Sampled Time Taken				None Supplied	Nama Compliant			
Date Sampled Time Taken							None Supplied	None Supplied
Time Taken				1.80	0.80	1.80	3.20	3.80
				05/12/2019	05/12/2019	04/12/2019	04/12/2019	04/12/2019
	1	r		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs								
Chloromethane	µg/kg	1	ISO 17025	< 1.0	-	< 1.0	< 1.0	-
Chloroethane	µg/kg	1	NONE	< 1.0	-	< 1.0	< 1.0	-
Bromomethane	µg/kg	1	ISO 17025	< 1.0	-	< 1.0	< 1.0	-
Vinyl Chloride	µg/kg	1	NONE	< 1.0	-	< 1.0	< 1.0	-
Trichlorofluoromethane	µg/kg	1	NONE	< 1.0	-	< 1.0	< 1.0	-
1,1-Dichloroethene 1,1,2-Trichloro 1,2,2-Trifluoroethane	µg/kg	1	NONE ISO 17025	< 1.0 < 1.0	-	< 1.0 < 1.0	< 1.0 < 1.0	-
Cis-1,2-dichloroethene	μg/kg μg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
1,1-Dichloroethane	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
2,2-Dichloropropane	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
Trichloromethane	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
1,1,1-Trichloroethane	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
1,2-Dichloroethane	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
1,1-Dichloropropene	µg/kg	1	MCERTS NONE	< 1.0	-	< 1.0	< 1.0	-
Trans-1,2-dichloroethene Benzene	µg/kg µg/kg	1	MCERTS	< 1.0 < 1.0	-	< 1.0	< 1.0	-
Tetrachloromethane	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
1,2-Dichloropropane	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
Trichloroethene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
Dibromomethane	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
Bromodichloromethane	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
Cis-1,3-dichloropropene	µg/kg	1	ISO 17025	< 1.0	-	< 1.0	< 1.0	-
Trans-1,3-dichloropropene Toluene	µg/kg	1	ISO 17025 MCERTS	< 1.0 < 1.0	-	< 1.0	< 1.0	-
1,1,2-Trichloroethane	µg/kg µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
1,3-Dichloropropane	µg/kg	1	ISO 17025	< 1.0	-	< 1.0	< 1.0	-
Dibromochloromethane	µg/kg	1	ISO 17025	< 1.0	-	< 1.0	< 1.0	-
Tetrachloroethene	µg/kg	1	NONE	< 1.0	-	< 1.0	< 1.0	-
1,2-Dibromoethane	µg/kg	1	ISO 17025	< 1.0	-	< 1.0	< 1.0	-
Chlorobenzene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
1,1,1,2-Tetrachloroethane	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
p & m-Xylene Styrene	µg/kg	1	MCERTS MCERTS	< 1.0 < 1.0	-	< 1.0 < 1.0	< 1.0 < 1.0	-
Tribromomethane	µg/kg µg/kg	1	NONE	< 1.0	-	< 1.0	< 1.0	-
o-Xylene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
1,1,2,2-Tetrachloroethane	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
Isopropylbenzene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
Bromobenzene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
n-Propylbenzene	µg/kg	1	ISO 17025	< 1.0	-	< 1.0	< 1.0	-
2-Chlorotoluene 4-Chlorotoluene	µg/kg µg/kg	1	MCERTS MCERTS	< 1.0 < 1.0	-	< 1.0 < 1.0	< 1.0	-
4-Chlorotoluene 1,3,5-Trimethylbenzene	μg/kg μg/kg	1	MCERTS ISO 17025	< 1.0	-	< 1.0	< 1.0	-
tert-Butylbenzene	µg/kg µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
1,2,4-Trimethylbenzene	µg/kg	1	ISO 17025	< 1.0	-	< 1.0	< 1.0	-
sec-Butylbenzene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
1,3-Dichlorobenzene	µg/kg	1	ISO 17025	< 1.0	-	< 1.0	< 1.0	-
p-Isopropyltoluene	µg/kg	1	ISO 17025	< 1.0	-	< 1.0	< 1.0	-
1,2-Dichlorobenzene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
1,4-Dichlorobenzene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
Butylbenzene	µg/kg	1	MCERTS ISO 17025	< 1.0 < 1.0	-	< 1.0	< 1.0	-
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	μg/kg μg/kg	1	MCERTS	< 1.0	-	< 1.0 < 1.0	< 1.0 < 1.0	-
Hexachlorobutadiene	µg/kg µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
1,2,3-Trichlorobenzene	µg/kg	1	ISO 17025	< 1.0	-	< 1.0	< 1.0	-

Lab Sample Number				1386189	1386190	1386191*	1386192	1386193
Sample Reference				TP127	TP128	WS101	WS102	WS105
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.80	0.80	1.80	3.20	3.80
Date Sampled				05/12/2019	05/12/2019	04/12/2019	04/12/2019	04/12/2019
Time Taken			r	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
		8-	Accreditation Status					
Analytical Parameter	Units	Limit of detection	creditat Status					
(Soil Analysis)	ស	tion of	us tic					
			on					
SVOCs								
Aniline	mg/kg	0.1	NONE	< 0.1	-	U/S	< 0.1	-
Phenol	mg/kg	0.2	ISO 17025	< 0.2	-	U/S	< 0.2	-
2-Chlorophenol Bis(2-chloroethyl)ether	mg/kg mg/kg	0.1	MCERTS MCERTS	< 0.1	-	U/S U/S	< 0.1	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	-	U/S	< 0.2	_
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	< 0.1	-	U/S	< 0.1	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	-	U/S	< 0.2	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	< 0.1	-	U/S	< 0.1	-
2-Methylphenol	mg/kg	0.3	MCERTS	< 0.3	-	U/S	< 0.3	-
Hexachloroethane Nitrobenzene	mg/kg mg/kg	0.05	MCERTS MCERTS	< 0.05	-	U/S U/S	< 0.05 < 0.3	-
4-Methylphenol	mg/kg mg/kg	0.3	NONE	< 0.2	-	U/S	< 0.2	-
Isophorone	mg/kg	0.2	MCERTS	< 0.2	-	U/S	< 0.2	-
2-Nitrophenol	mg/kg	0.3	MCERTS	< 0.3	-	U/S	< 0.3	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	< 0.3	-	U/S	< 0.3	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	< 0.3	-	U/S	< 0.3	-
1,2,4-Trichlorobenzene Naphthalene	mg/kg	0.3	MCERTS MCERTS	< 0.3 5.1	-	U/S U/S	< 0.3	-
2,4-Dichlorophenol	mg/kg mg/kg	0.03	MCERTS	< 0.3	-	U/S	< 0.3	-
4-Chloroaniline	mg/kg	0.1	NONE	< 0.1	-	U/S	< 0.1	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	< 0.1	-	U/S	< 0.1	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	< 0.1	-	U/S	< 0.1	-
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	< 0.1	-	U/S	< 0.1	-
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	< 0.2	-	U/S	< 0.2	-
2-Methylnaphthalene 2-Chloronaphthalene	mg/kg mg/kg	0.1	NONE MCERTS	4.0	-	U/S U/S	0.7	-
Dimethylphthalate	mg/kg	0.1	MCERTS	< 0.1	-	U/S	< 0.1	_
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	< 0.1	-	U/S	< 0.1	-
Acenaphthylene	mg/kg	0.05	MCERTS	2.4	-	U/S	0.61	-
Acenaphthene	mg/kg	0.05	MCERTS	4.6	-	U/S	3.0	-
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	< 0.2	-	U/S	< 0.2	-
Dibenzofuran 4-Chlorophenyl phenyl ether	mg/kg mg/kg	0.2	MCERTS ISO 17025	3.0 < 0.3	-	U/S U/S	1.1 < 0.3	-
Diethyl phthalate	mg/kg	0.3	MCERTS	< 0.2	-	U/S	< 0.2	-
4-Nitroaniline	mg/kg	0.2	MCERTS	< 0.2	-	U/S	< 0.2	-
Fluorene	mg/kg	0.05	MCERTS	5.7	-	U/S	3.6	-
Azobenzene	mg/kg	0.3	MCERTS	< 0.3	-	U/S	< 0.3	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	< 0.2	-	U/S	< 0.2	-
Hexachlorobenzene Phenanthrene	mg/kg mg/kg	0.3	MCERTS MCERTS	< 0.3 24	-	U/S U/S	< 0.3	-
Anthracene	mg/kg mg/kg	0.05	MCERTS	7.5	-	U/S	5.6	-
Carbazole	mg/kg	0.3	MCERTS	2.3	-	U/S	1.1	-
Dibutyl phthalate	mg/kg	0.2	MCERTS	< 0.2	-	U/S	< 0.2	-
Anthraquinone	mg/kg	0.3	MCERTS	< 0.3	-	U/S	0.9	-
Fluoranthene	mg/kg	0.05	MCERTS	27	-	U/S	25	-
Pyrene Butyl benzyl phthalate	mg/kg	0.05	MCERTS	22	-	U/S U/S	21 < 0.3	-
Butyl benzyl phthalate Benzo(a)anthracene	mg/kg mg/kg	0.3	ISO 17025 MCERTS	< 0.3 12	-	U/S U/S	<u>< 0.3</u> 9.6	-
Chrysene	mg/kg	0.05	MCERTS	9.2	-	U/S	9.9	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	10	-	U/S	8.5	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	5.9	-	U/S	4.8	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	9.7	-	U/S	7.6	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	4.1	-	U/S	4.4	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	1.1	-	U/S	1.4	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	4.6	-	U/S	4.6	-

* This sample was reported unsuitable for analysis due to high level of asbestos contaminati

Lab Sample Number				1386194					
Sample Reference				WS112					
Sample Number				None Supplied		1	t	1	
Depth (m)				2.30					
Date Sampled				05/12/2019					
Time Taken				None Supplied					
	1	r	1	None Supplied					
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status						
Stone Content	%	0.1	NONE	< 0.1					
Moisture Content	%	N/A	NONE	14					
Total mass of sample received	kg	0.001	NONE	0.41					
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	Chrysotile					
Asbestos in Soil	Туре	N/A	ISO 17025	Detected		1	I	1	
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	0.014					
Asbestos Quantification Total	%	0.001	ISO 17025	0.014					
General Inorganics									
pH - Automated	pH Units	N/A	MCERTS	-		1	I		
Total Cyanide	mg/kg	1	MCERTS	< 1		1	1	1	
Total Sulphate as SO ₄	mg/kg	50	MCERTS	-					
	iiig/kg	50	PICERTS						
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	g/l	0.00125	MCERTS	-					
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/kg	2.5	MCERTS	-					
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/l	1.25	MCERTS	-					
Sulphide	mg/kg	1	MCERTS	-					
Total Sulphur	mg/kg	50	MCERTS	-					
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.1					
Total organic carbon (Toc)	70	0.1	HEEKIS	1.1			1		
Total Phenois									
Total Phenols (monohydric)	mg/kg	1	MCERTS	-		1		I	
Total Frichols (monorryane)	iiig/kg	1	PICERTS				1		
Speciated PAHs									
Naphthalene	mg/kg	0.05	MCERTS	0.94					
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05		1	1	1	
Acenaphthene	mg/kg mg/kg	0.05	MCERTS	< 0.05		1	1	1	
		0.05		< 0.05		1	1	1	
Fluorene	mg/kg	0.05	MCERTS	< 0.05 0.54		1	1	1	
Phenanthrene	mg/kg		MCERTS			1	1	1	
Anthracene	mg/kg	0.05	MCERTS	0.11		ł		ł	
Fluoranthene	mg/kg	0.05	MCERTS	0.51		 		ł	
Pyrene	mg/kg	0.05	MCERTS	0.54		 		ł	
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.29		ł		ł	
Chrysene	mg/kg	0.05	MCERTS	0.27		ł		ł	
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.31		ļ	l	ļ	
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.14		l		l	
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.22		l		l	
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05			Į		
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05					
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05					
Total PAH									
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	3.87					

Lab Sample Number				1386194		
Sample Reference		WS112				
Sample Number		None Supplied				
Depth (m)		2.30				
Date Sampled				05/12/2019		
Time Taken	None Supplied					
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Heavy Metals / Metalloids						
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	15		
Barium (aqua regia extractable)	mg/kg	1	MCERTS	780		
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	5.0		
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	2.0		
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0		
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-		
Copper (aqua regia extractable)	mg/kg	1	MCERTS	320		
Lead (aqua regia extractable)	mg/kg	1	MCERTS	110		
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3		
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	80		
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	3.8		
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	100		
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	2500		

Monoaromatics & Oxygenates

Benzene	µg/kg	1	MCERTS	-		
Toluene	µg/kg	1	MCERTS	-		
Ethylbenzene	µg/kg	1	MCERTS	-		
p & m-xylene	µg/kg	1	MCERTS	-		
o-xylene	µg/kg	1	MCERTS	-		
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-		

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-		
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-		
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-		
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-		
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-		
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-		
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-		
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-		
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-		
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-		
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-		
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-		
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-		
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-		
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-		
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-		

TPH (C5 - C6)	mg/kg	1	NONE	< 1.0		
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1		
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1		
TPH (C10 - C12)	mg/kg	2	MCERTS	4.4		
TPH (C12 - C16)	mg/kg	4	MCERTS	9.6		
TPH (C16 - C21)	mg/kg	1	MCERTS	33		
TPH (C21 - C35)	mg/kg	1	MCERTS	85		
TPH (C35 - C40)	mg/kg	10	MCERTS	< 10		
TPH Total C5 - C40	mg/kg	10	MCERTS	140		

Lab Sample Number				1386194		
Sample Reference				WS112		
Sample Number				None Supplied		
Depth (m)				2.30		
Date Sampled				05/12/2019		
Time Taken				None Supplied		
			A			
Analytical Deservator	_	Limit of detection	Accreditation Status			
Analytical Parameter	Units	iect	adit			
(Soil Analysis)	S	ion of	atio Is			
			on			
VOCs						
Chloromethane	µg/kg	1	ISO 17025	-		
Chloroethane	µg/kg	1	NONE	-		
Bromomethane	µg/kg	1	ISO 17025	-		
Vinyl Chloride	µg/kg	1	NONE	-		
Trichlorofluoromethane	µg/kg	1	NONE	-		
1,1-Dichloroethene	µg/kg	1	NONE	-		
1,1,2-Trichloro 1,2,2-Trifluoroethane Cis-1,2-dichloroethene	µg/kg µg/kg	1	ISO 17025 MCERTS	-		
MTBE (Methyl Tertiary Butyl Ether)	µg/kg µg/kg	1	MCERTS	-		
1,1-Dichloroethane	µg/kg µg/kg	1	MCERTS	-		
2,2-Dichloropropane	µg/kg	1	MCERTS	-		
Trichloromethane	µg/kg	1	MCERTS	-		
1,1,1-Trichloroethane	µg/kg	1	MCERTS	-		
1,2-Dichloroethane	µg/kg	1	MCERTS	-		
1,1-Dichloropropene	µg/kg	1	MCERTS	-		
Trans-1,2-dichloroethene	µg/kg	1	NONE	-		
Benzene	µg/kg	1	MCERTS	-		
Tetrachloromethane	µg/kg	1	MCERTS	-		
1,2-Dichloropropane	µg/kg	1	MCERTS	-		
Trichloroethene	µg/kg	1	MCERTS MCERTS	-		
Dibromomethane Bromodichloromethane	µg/kg µg/kg	1	MCERTS	-		
Cis-1,3-dichloropropene	µg/kg µg/kg	1	ISO 17025	-		
Trans-1,3-dichloropropene	µg/kg	1	ISO 17025	-		
Toluene	µg/kg	1	MCERTS	-		
1,1,2-Trichloroethane	µg/kg	1	MCERTS	-		
1,3-Dichloropropane	µg/kg	1	ISO 17025	-		
Dibromochloromethane	µg/kg	1	ISO 17025	-		
Tetrachloroethene	µg/kg	1	NONE	-		
1,2-Dibromoethane	µg/kg	1	ISO 17025	-		
Chlorobenzene	µg/kg	1	MCERTS	-		
1,1,1,2-Tetrachloroethane	µg/kg	1	MCERTS	-	 	
Ethylbenzene	µg/kg	1	MCERTS	-		
p & m-Xylene Styrene	µg/kg	1	MCERTS MCERTS	-	 	
Tribromomethane	µg/kg µg/kg	1	NONE	-	 	
o-Xylene	µg/kg µg/kg	1	MCERTS	-		
1,1,2,2-Tetrachloroethane	µg/kg	1	MCERTS	-		
Isopropylbenzene	µg/kg	1	MCERTS	-		
Bromobenzene	µg/kg	1	MCERTS	-		
n-Propylbenzene	µg/kg	1	ISO 17025	-		
2-Chlorotoluene	µg/kg	1	MCERTS	-		
4-Chlorotoluene	µg/kg	1	MCERTS	-		
1,3,5-Trimethylbenzene	µg/kg	1	ISO 17025	-		
tert-Butylbenzene	µg/kg	1	MCERTS	-		
1,2,4-Trimethylbenzene	µg/kg	1	ISO 17025	-	 	
sec-Butylbenzene 1,3-Dichlorobenzene	µg/kg µg/kg	1	MCERTS ISO 17025	-		
p-Isopropyltoluene	µg/kg µg/kg	1	ISO 17025 ISO 17025	-	 	
1,2-Dichlorobenzene	µg/kg µg/kg	1	MCERTS	-		
1,4-Dichlorobenzene	µg/kg µg/kg	1	MCERTS	-		
Butylbenzene	µg/kg	1	MCERTS	-		
1,2-Dibromo-3-chloropropane	µg/kg	1	ISO 17025	-		
1,2,4-Trichlorobenzene	µg/kg	1	MCERTS	-		
Hexachlorobutadiene	µg/kg	1	MCERTS	-		
1,2,3-Trichlorobenzene	µg/kg	1	ISO 17025	-		

Lab Sample Number				1386194		
Sample Reference				WS112		
Sample Number				None Supplied		
Depth (m)				2.30		
Date Sampled				05/12/2019		
Time Taken				None Supplied		
			Ao			
Analytical Parameter	Units	Limit of detection	Accreditation Status			
(Soil Analysis)	nits	cti č	lita			
		ă f	tion			
SVOCs						
Aniline	mg/kg	0.1	NONE	-		
Phenol	mg/kg	0.2	ISO 17025	-		
2-Chlorophenol	mg/kg	0.1	MCERTS	-		
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-		
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-		
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-		
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-		
Bis(2-chloroisopropyl)ether 2-Methylphenol	mg/kg	0.1	MCERTS MCERTS	-	 	
2-Metnyiphenöi Hexachloroethane	mg/kg mg/kg	0.3	MCERTS	-		
Nitrobenzene	mg/kg	0.03	MCERTS	-		
4-Methylphenol	mg/kg	0.2	NONE	-		
Isophorone	mg/kg	0.2	MCERTS	-		
2-Nitrophenol	mg/kg	0.3	MCERTS	-		
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-		
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-		
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-		-
Naphthalene 2,4-Dichlorophenol	mg/kg	0.05	MCERTS MCERTS	-		
4-Chloroaniline	mg/kg mg/kg	0.3	NONE	-		
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-		
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-		
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-		
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-		
2-Methylnaphthalene	mg/kg	0.1	NONE	-		
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-		
Dimethylphthalate	mg/kg	0.1	MCERTS	-		-
2,6-Dinitrotoluene Acenaphthylene	mg/kg	0.1	MCERTS MCERTS	-	 	
Acenaphthene	mg/kg mg/kg	0.05	MCERTS	-		
2,4-Dinitrotoluene	mg/kg	0.03	MCERTS	-		-
Dibenzofuran	mg/kg	0.2	MCERTS	-		
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-		
Diethyl phthalate	mg/kg	0.2	MCERTS	-		
4-Nitroaniline	mg/kg	0.2	MCERTS	-		
Fluorene	mg/kg	0.05	MCERTS	-	 	
Azobenzene	mg/kg	0.3	MCERTS	-		
Bromophenyl phenyl ether Hexachlorobenzene	mg/kg	0.2	MCERTS MCERTS	-		
Phenanthrene	mg/kg mg/kg	0.3	MCERTS	-		
Anthracene	mg/kg	0.05	MCERTS	-		
Carbazole	mg/kg	0.3	MCERTS	-		
Dibutyl phthalate	mg/kg	0.2	MCERTS	-		
Anthraquinone	mg/kg	0.3	MCERTS	-		
Fluoranthene	mg/kg	0.05	MCERTS	-		
Pyrene	mg/kg	0.05	MCERTS	-		
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	 	
Benzo(a)anthracene Chrysene	mg/kg	0.05	MCERTS MCERTS	-		
Chrysene Benzo(b)fluoranthene	mg/kg mg/kg	0.05	MCERTS	-		
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-		
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-		
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-		
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-		
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-		

* This sample was reported unsuitable for analysis due to high level of asbestos contaminati

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006 based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1386191	WS101	1.80	80	Loose Fibrous Debris	Chrysotile & Amosite	1.183	1.18
1386192	WS102	3.20	120	Bitumen	Chrysotile	0.036	0.036
1386194	WS112	2.30	133	Hard/ Cement Type Material	Chrysotile	0.014	0.014

Both Qualitative and Quantitative Analyses are UKAS accredited.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Project / Site name: Ryebank Chorlton

Lab Sample Number				1386195	1386196	1386197	1386198	
Sample Reference				TP103	TP106	WS106	WS111	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				2.10	1.50	0.80	2.70	
Date Sampled				04/12/2019	04/12/2019	04/12/2019	05/12/2019	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
		승 드	Accreditation Status					
Analytical Parameter	Units	Limit of detection	creditat Status					
(Leachate Analysis)	ស	tion	us tati					
		-	ŝ					
General Inorganics								
h	pH Units	N/A	ISO 17025	12.6	8.2	8.3	12.6	
Fotal Cyanide (Low Level 1 μg/l)	µg/l	1	ISO 17025	7.4	< 1.0	1.5	5.2	
Total Phenols					1			
Total Phenols (monohydric)	µg/l	1	ISO 17025	22	4.6	2.0	8.9	
Successful DALLS								
Speciated PAHs		0.01	100 1702-	- 0.01	. 0.01		10.01	
Naphthalene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Acenaphthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Fluorene	µg/l	0.01	ISO 17025	< 0.01	< 0.01 < 0.01	< 0.01	< 0.01 < 0.01	
Phenanthrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Anthracene Fluoranthene	µg/l	0.01	ISO 17025 ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
	µg/l	0.01	ISO 17025 ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(a)anthracene	µg/l	0.01		< 0.01	< 0.01	< 0.01		
Chrysene	µg/l	0.01	ISO 17025 ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01 < 0.01	
Benzo(b)fluoranthene Benzo(k)fluoranthene	µg/l	0.01	ISO 17025 ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Indeno(1,2,3-cd)pyrene	µg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
Dibenz(a,h)anthracene	μg/l μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(ghi)perylene	μg/i μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
Denzo(ghi)peryiene	µg/i	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
Total PAH								
Total EPA-16 PAHs	µg/l	0.2	NONE	< 0.2	< 0.2	< 0.2	< 0.2	
Heavy Metals / Metalloids								
Arsenic (dissolved)	µg/l	1.1	ISO 17025	12	5.5	2.0	4.4	
Cadmium (dissolved)	µg/l	0.08	ISO 17025	< 0.08	< 0.08	< 0.08	< 0.08	
Chromium (hexavalent)	µg/l	5	ISO 17025	< 5.0	20	< 5.0	< 5.0	
Chromium (dissolved)	µg/l	0.4	ISO 17025	1.5	0.7	3.1	0.6	
Copper (dissolved)	µg/l	0.7	ISO 17025	14	110	9.0	13	
Lead (dissolved)	µg/l	1	ISO 17025	1.5	9.8	26	< 1.0	
Mercury (dissolved)	µg/l	0.5	ISO 17025	< 0.5	< 0.5	< 0.5	< 0.5	
Nickel (dissolved)	µg/l	0.3	ISO 17025	11	7.1	2.0	5.3	
Selenium (dissolved)	µg/l	4	ISO 17025	< 4.0	< 4.0	< 4.0	< 4.0	
Zinc (dissolved)	µg/l	0.4	ISO 17025	6.4	73	13	2.7	
Monoscomotics & Oursesset								
Monoaromatics & Oxygenates			100 170	.10	. 1.0	.10	.10	
Senzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0	
o & m-xylene p-xylene	µg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0 < 1.0		< 1.0	
J-YAICHC	µg/l	1	120 1/022	< 1.0	< 1.0	< 1.0 < 10	< 1.0	

Project / Site name: Ryebank Chorlton

Your Order No: 34146	Your	Order	No:	34146
----------------------	------	-------	-----	-------

Lab Sample Number	ab Sample Number					1386197	1386198	
Sample Reference				TP103	TP106	WS106	WS111	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				2.10	1.50	0.80	2.70	
Date Sampled				04/12/2019	04/12/2019	04/12/2019	05/12/2019	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status					

Petroleum Hydrocarbons

TPH1 (C10 - C40)	µg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	< 10	< 10	< 10	< 10	

Project / Site name: Ryebank Chorlton

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1386182	TP103	None Supplied	1.30	Brown loam and sand with gravel.
1386183	TP105	None Supplied	0.10	Brown clay and sand with vegetation.
1386184	TP111	None Supplied	1.20	Grey clay.
1386186	TP115	None Supplied	1.60	Grey clay.
1386187	TP116	None Supplied	1.50	Brown clay and sand with gravel.
1386189	TP127	None Supplied	1.80	Brown clay and sand with gravel.
1386190	TP128	None Supplied	0.80	Brown sand with gravel and clinker
1386191	WS101	None Supplied	1.80	Brown clay and sand.
1386192	WS102	None Supplied	3.20	Brown sand with clinker.
1386193	WS105	None Supplied	3.80	Grey clay.
1386194	WS112	None Supplied	2.30	Brown sand with clinker.

Project / Site name: Ryebank Chorlton

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
BS EN 12457-1 (2:1) Leachate Prep	2:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-1.	L043-PL	W	NONE
BTEX and MTBE in leachates (Monoaromatics)	Determination of BTEX and MTBE in leachates by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	w	MCERTS
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Hexavalent chromium in leachate	Determination of hexavalent chromium in leachate by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	w	ISO 17025
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	w	MCERTS
Metals by ICP-OES in leachate	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In-house method based on BS1377 Part 2, 1990, Classification tests	L019-UK/PL	W	NONE
Monohydric phenols in leachate - LOW LEVEL 1 ug/l	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	ISO 17025
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	MCERTS
pH at 20oC in leachate	Determination of pH in leachate by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	ISO 17025
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Speciated EPA-16 PAHs in leachate	Determination of PAH compounds in leachate by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L102B-PL	w	NONE

Iss No 19-76421-2 Ryebank Chorlton 13533

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: Ryebank Chorlton

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (1hr extraction)	Sulphate, water soluble, in soil (1hr extraction)	In-house method	L038-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total cyanide in leachate - 1µg/l	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	w	ISO 17025
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests""	L009-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, and MEWAM 2006 Methods for the Determination of Metals in Soil	L038-PL	D	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS
TPH1 (Leachates)	Determination of dichloromethane extractable hydrocarbons in leachate by GC-MS.	In-house method	L070-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	w	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	w	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture soil analytical results is determined envinementically using the moisture content which is carried out at a maximum of 30oC. correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Ella Moss e3p Office 4 Heliport Business Park Eccles Liverpool Road Manchester M30 7RU

t: 0161 707 9612

e: EMoss@e3p.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number : 19-78337

Project / Site name:	Ryebank	Samples received on:	17/12/2019
Your job number:	13533	Samples instructed on:	18/12/2019
Your order number:	34269	Analysis completed by:	30/12/2019
Report Issue Number:	1	Report issued on:	30/12/2019
Samples Analysed:	4 water samples		

Signed: R. Crenvinska

Agnieszka Czerwińska

Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 19-78337

Project / Site name: Ryebank

Lab Sample Number				1397016	1397017	1397018	1397019	
Sample Reference				WS101	WS110	CP101	CP102	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied	
Date Sampled			16/12/2019	16/12/2019	16/12/2019	16/12/2019		
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
			~					
		2 –	0					
Analytical Parameter	Units	Limit of detection	creditat Status					
(Water Analysis)	its	ct i	tus					
		ă f	Accreditation Status					
			-					
General Inorganics								
pH	pH Units	N/A	ISO 17025	7.2	7.8	11.1	10.7	
Total Cyanide (Low Level 1 μg/l)	µg/l	1	ISO 17025	5.2	31	160	81	
Total Bhanala								
Total Phenols Total Phenols (monohydric)	µg/l	1	ISO 17025	5.1	34	190	310	
	P9/1	1	150 17025	5.1	Л	130	510	
Heavy Metals / Metalloids			-					
Arsenic (dissolved)	µg/l	0.15	ISO 17025	3.63	15.4	12.8	14.0	
Cadmium (dissolved)	µg/l	0.02	ISO 17025	0.03	0.06	0.04	0.03	
Chromium (hexavalent)	µg/l	5	ISO 17025	< 5.0	< 5.0	< 5.0	< 5.0	
Chromium (dissolved)	µg/l	0.2	ISO 17025	0.7	0.9	5.7	1.3	
Copper (dissolved)	µg/l	0.5	ISO 17025	4.3	9.1	7.5	5.0	
Lead (dissolved)	µg/l	0.2	ISO 17025	0.4	16	4.4	9.5	
Mercury (dissolved)	µg/l	0.05	ISO 17025	< 0.05	< 0.05	0.18	0.17	
Nickel (dissolved)	µg/l	0.5	ISO 17025	4.7	22	6.4	15	
Selenium (dissolved)	µg/l	0.6	ISO 17025	1.4	3.1	5.3	3.8	
Zinc (dissolved)	µg/l	0.5	ISO 17025	14	48	62	34	
	-		-		-	-		
Monoaromatics & Oxygenates	B				Ĩ.		1	
Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	11.3	7.0	
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	4.6	4.4	
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	1.8	1.6	
p & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	4.3	5.3	
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	3.3	3.1	
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
Petroleum Hydrocarbons								
						-		
TPH1 (C10 - C40)	µg/l	10	NONE	< 10	< 10	360	150	
TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
			ISO 17025			< 1.0	< 1.0	
TPH-CWG - Aliphatic >C6 - C8	ua/l	1	130 1702.5	< 1.0	< 1.0			
	μg/l μq/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aliphatic >C6 - C8 TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0 < 10	
TPH-CWG - Aliphatic >C6 - C8 TPH-CWG - Aliphatic >C8 - C10 TPH-CWG - Aliphatic >C10 - C12	μg/l μg/l	1 10	ISO 17025 NONE	< 1.0 < 10	< 1.0 < 10	< 1.0 < 10	< 10	
TPH-CWG - Aliphatic >C6 - C8 TPH-CWG - Aliphatic >C8 - C10 TPH-CWG - Aliphatic >C10 - C12 TPH-CWG - Aliphatic >C12 - C16	µg/I µg/I µg/I	1 10 10	ISO 17025 NONE NONE	< 1.0 < 10 < 10	< 1.0 < 10 < 10	< 1.0 < 10 < 10	< 10 < 10	
TPH-CWG - Aliphatic >C6 - C8 TPH-CWG - Aliphatic >C8 - C10 TPH-CWG - Aliphatic >C10 - C12 TPH-CWG - Aliphatic >C12 - C16 TPH-CWG - Aliphatic >C16 - C21	µg/I µg/I µg/I µg/I	1 10 10 10	ISO 17025 NONE NONE NONE	< 1.0 < 10 < 10 < 10 < 10	< 1.0 < 10 < 10 < 10 < 10	< 1.0 < 10 < 10 < 10 < 10	< 10 < 10 < 10	
TPH-CWG - Aliphatic >C6 - C8 TPH-CWG - Aliphatic >C8 - C10 TPH-CWG - Aliphatic >C10 - C12 TPH-CWG - Aliphatic >C12 - C16	µg/I µg/I µg/I	1 10 10	ISO 17025 NONE NONE	< 1.0 < 10 < 10	< 1.0 < 10 < 10	< 1.0 < 10 < 10	< 10 < 10	
TPH-CWG - Aliphatic >C6 - C8 TPH-CWG - Aliphatic >C10 - C12 TPH-CWG - Aliphatic >C12 - C16 TPH-CWG - Aliphatic >C16 - C21 TPH-CWG - Aliphatic >C21 - C35 TPH-CWG - Aliphatic (C5 - C35)	µg/I µg/I µg/I µg/I µg/I	1 10 10 10 10	ISO 17025 NONE NONE NONE NONE	< 1.0 < 10 < 10 < 10 < 10 < 10	< 1.0 < 10 < 10 < 10 < 10 < 10	< 1.0 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	
TPH-CWG - Aliphatic >C6 - C8 TPH-CWG - Aliphatic >C10 - C12 TPH-CWG - Aliphatic >C12 - C16 TPH-CWG - Aliphatic >C16 - C21 TPH-CWG - Aliphatic >C16 - C21 TPH-CWG - Aliphatic >C21 - C35 TPH-CWG - Aliphatic >C21 - C35 TPH-CWG - Aliphatic >C5 - C35)	µg/I µg/I µg/I µg/I µg/I	1 10 10 10 10 10	ISO 17025 NONE NONE NONE NONE NONE ISO 17025	< 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 10	< 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 10	< 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 11	< 10 < 10 < 10 < 10 < 10 < 10 7.0	
TPH-CWG - Aliphatic >C6 - C8 TPH-CWG - Aliphatic >C10 - C12 TPH-CWG - Aliphatic >C12 - C16 TPH-CWG - Aliphatic >C16 - C21 TPH-CWG - Aliphatic >C16 - C21 TPH-CWG - Aliphatic >C21 - C35 TPH-CWG - Aliphatic >C21 - C35 TPH-CWG - Aliphatic >C21 - C35 TPH-CWG - Aliphatic >C5 - C35 TPH-CWG - Aromatic >C5 - C7 TPH-CWG - Aromatic >C7 - C8	μg/l μg/l μg/l μg/l μg/l	1 10 10 10 10 10 10	ISO 17025 NONE NONE NONE NONE NONE ISO 17025 ISO 17025	< 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 1.0 < 1.0	< 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 1.0 < 1.0	< 1.0 < 10 < 10 < 10 < 10 < 10 < 10 11 4.6	< 10 < 10 < 10 < 10 < 10 7.0 4.4	
TPH-CWG - Aliphatic >C6 - C8 TPH-CWG - Aliphatic >C10 - C12 TPH-CWG - Aliphatic >C12 - C16 TPH-CWG - Aliphatic >C16 - C21 TPH-CWG - Aliphatic >C21 - C35 TPH-CWG - Aliphatic >C21 - C35 TPH-CWG - Aliphatic >C5 - C35 TPH-CWG - Aromatic >C5 - C7 TPH-CWG - Aromatic >C7 - C8 TPH-CWG - Aromatic >C8 - C10	μg/l μg/l μg/l μg/l μg/l μg/l	1 10 10 10 10 10	ISO 17025 NONE NONE NONE NONE NONE ISO 17025	< 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 10	< 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 10	< 1.0 < 10 < 10 < 10 < 10 < 10 < 10 11 4.6 11	< 10 < 10 < 10 < 10 < 10 < 10 7.0	
TPH-CWG - Aliphatic >C6 - C8 TPH-CWG - Aliphatic >C10 - C12 TPH-CWG - Aliphatic >C12 - C16 TPH-CWG - Aliphatic >C16 - C21 TPH-CWG - Aliphatic >C16 - C21 TPH-CWG - Aliphatic >C21 - C35 TPH-CWG - Aliphatic >C21 - C35 TPH-CWG - Aliphatic >C5 - C35 TPH-CWG - Aromatic >C5 - C7 TPH-CWG - Aromatic >C7 - C8 TPH-CWG - Aromatic >C7 - C10 TPH-CWG - Aromatic >C10 - C12	μg/l μg/l μg/l μg/l μg/l μg/l μg/l	1 10 10 10 10 10 10	ISO 17025 NONE NONE NONE NONE NONE ISO 17025 ISO 17025		< 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 1.0 < 1.0 < 1.0 < 10 < 10		< 10 < 10 < 10 < 10 < 10 < 10 7.0 4.4 12 48	
TPH-CWG - Aliphatic >C6 - C8 TPH-CWG - Aliphatic >C10 - C12 TPH-CWG - Aliphatic >C12 - C16 TPH-CWG - Aliphatic >C12 - C16 TPH-CWG - Aliphatic >C21 - C35 TPH-CWG - Aliphatic >C21 - C35 TPH-CWG - Aliphatic >C21 - C35 TPH-CWG - Aliphatic >C7 - C35 TPH-CWG - Aromatic >C7 - C8 TPH-CWG - Aromatic >C10 - C12 TPH-CWG - Aromatic >C10 - C12 TPH-CWG - Aromatic >C10 - C12	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	1 10 10 10 10 10 10 10 1 1 1 10 10	ISO 17025 NONE NONE NONE NONE NONE ISO 17025 ISO 17025 ISO 17025	< 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 1.0 < 1.0 < 1.0			< 10 < 10 < 10 < 10 < 10 < 10 7.0 4.4 12 48 63	
TPH-CWG - Aliphatic >C6 - C8 TPH-CWG - Aliphatic >C10 - C12 TPH-CWG - Aliphatic >C12 - C16 TPH-CWG - Aliphatic >C16 - C21 TPH-CWG - Aliphatic >C21 - C35 TPH-CWG - Aliphatic >C21 - C35 TPH-CWG - Aliphatic >C21 - C35 TPH-CWG - Aliphatic >C5 - C35 TPH-CWG - Aromatic >C5 - C7 TPH-CWG - Aromatic >C7 - C8 TPH-CWG - Aromatic >C7 - C10 TPH-CWG - Aromatic >C10 - C12	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	1 10 10 10 10 10 10 10 1 1 1 10	ISO 17025 NONE NONE NONE NONE NONE ISO 17025 ISO 17025 ISO 17025 NONE		< 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 1.0 < 1.0 < 1.0 < 10 < 10		< 10 < 10 < 10 < 10 < 10 < 10 7.0 4.4 12 48	
TPH-CWG - Aliphatic >C6 - C8 TPH-CWG - Aliphatic >C10 - C12 TPH-CWG - Aliphatic >C12 - C16 TPH-CWG - Aliphatic >C12 - C16 TPH-CWG - Aliphatic >C21 - C35 TPH-CWG - Aliphatic >C21 - C35 TPH-CWG - Aliphatic >C21 - C35 TPH-CWG - Aliphatic >C7 - C35 TPH-CWG - Aromatic >C7 - C8 TPH-CWG - Aromatic >C10 TPH-CWG - Aromatic >C10 - C12 TPH-CWG - Aromatic >C10 - C12	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	1 10 10 10 10 10 10 10 1 1 1 10 10	ISO 17025 NONE NONE NONE NONE NONE ISO 17025 ISO 17025 ISO 17025 NONE NONE				< 10 < 10 < 10 < 10 < 10 < 10 7.0 4.4 12 48 63	

Analytical Report Number: 19-78337

Project / Site name: Ryebank

Your Order No: 34269								
Lab Sample Number				1397016	1397017	1397018	1397019	
Sample Reference				WS101	WS110	CP101	CP102	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied	
Date Sampled				16/12/2019	16/12/2019	16/12/2019	16/12/2019	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
VOCs			_					
Chloromethane	110/	1	ISO 17025	< 1.0	- 1.0	- 1.0	. 1.0	1
Chloroethane	μg/l μg/l	1	ISO 17025	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	
Bromomethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
Vinvl Chloride	µg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	
Trichlorofluoromethane	µg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	
1,1-Dichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
1,1,2-Trichloro-1,2,2-trifluoroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
Cis-1,2-dichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	İ
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
1,1-Dichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
2,2-Dichloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
Trichloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	9.1	< 1.0	
1,1,1-Trichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
1,2-Dichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
1,1-Dichloropropene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
Trans-1,2-dichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	11.3	7.0	
Tetrachloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
1,2-Dichloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
Trichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
Dibromomethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
Bromodichloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
Cis-1,3-dichloropropene Trans-1,3-dichloropropene	µg/l	1	ISO 17025 ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	
Toluene	μg/l μg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	4.6	< 1.0 4.4	
1,1,2-Trichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
1,3-Dichloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
Dibromochloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
Tetrachloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
1,2-Dibromoethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
Chlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
1,1,1,2-Tetrachloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	1.8	1.6	
p & m-Xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	4.3	5.3	
Styrene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	ļ
Tribromomethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
o-Xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	3.3	3.1	
1,1,2,2- Letrachloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
Isopropylbenzene Bromobenzene	μg/l μg/l	1 1	ISO 17025 ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	
n-Propylbenzene	µg/i µg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
2-Chlorotoluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	İ
4-Chlorotoluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	1
1,3,5-Trimethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
tert-Butylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
1,2,4-Trimethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	1.9	1.7	
sec-Butylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
1,3-Dichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
p-Isopropyltoluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
1,2-Dichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	ļ
1,4-Dichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	ļ
Butylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
L,2,4-Trichlorobenzene Hexachlorobutadiene	µg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	1
1,2,3-Trichlorobenzene	μg/l μg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
	μ9/1	1 ¹	130 17023	~ 1.0	~ 1.0	~ 1.0	× 1.0	1

Analytical Report Number: 19-78337

Project / Site name: Ryebank

Your Order No: 34269								
Lab Sample Number				1397016	1397017	1397018	1397019	
Sample Reference				WS101	WS110	CP101	CP102	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied	
Date Sampled				16/12/2019	16/12/2019	16/12/2019	16/12/2019	
Time Taken	_		-	None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
SVOCs							B	
Aniline	µg/l	0.05	NONE	< 0.05	4.5	9.7	10	
Phenol	µg/l	0.05	NONE	< 0.05	< 0.05	6.0	17	
2-Chlorophenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	
Bis(2-chloroethyl)ether	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	
1,3-Dichlorobenzene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	
1,2-Dichlorobenzene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	
1,4-Dichlorobenzene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	
Bis(2-chloroisopropyl)ether	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	
2-Methylphenol	µg/l	0.05	NONE	< 0.05	< 0.05	17	39	
Hexachloroethane	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	
Nitrobenzene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	
4-Methylphenol	µg/l	0.05	NONE	< 0.05	< 0.05	26	55	
Isophorone	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	-
2-Nitrophenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	
2,4-Dimethylphenol	µg/l	0.05	NONE	< 0.05	2.0	38	76	
Bis(2-chloroethoxy)methane	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	
1,2,4-Trichlorobenzene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	
Naphthalene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	16	3.4	
2,4-Dichlorophenol	µg/l	0.05	NONE	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05	
4-Chloroaniline Hexachlorobutadiene	µg/l	0.05	NONE NONE	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	
4-Chloro-3-methylphenol	µg/l µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	
2,4,6-Trichlorophenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	
2,4,5-Trichlorophenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	
2-Methylnaphthalene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	
2-Chloronaphthalene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	
Dimethylphthalate	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	
2,6-Dinitrotoluene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	0.50	< 0.01	
Acenaphthene	µg/l	0.01	ISO 17025	5.2	< 0.01	0.35	< 0.01	
2,4-Dinitrotoluene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	
Dibenzofuran	µg/l	0.05	NONE	0.97	< 0.05	< 0.05	< 0.05	
4-Chlorophenyl phenyl ether	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	
Diethyl phthalate	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	
4-Nitroaniline	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	
Fluorene	µg/l	0.01	ISO 17025	2.0	< 0.01	< 0.01	< 0.01	
Azobenzene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	
Bromophenyl phenyl ether	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	
Hexachlorobenzene Phenanthrene	µg/l	0.05	NONE ISO 17025	< 0.05 1.0	< 0.05 < 0.01	< 0.05	< 0.05 < 0.01	
Anthracene	µg/l	0.01	ISO 17025 ISO 17025	0.25	< 0.01	< 0.01	< 0.01	
Carbazole	µg/l µg/l	0.01	NONE	< 0.05	< 0.01	3.2	1.7	
Dibutyl phthalate	µg/i µg/l	0.05	NONE	< 0.05	6.9	20	5.8	
Anthraquinone	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	1.8	
Fluoranthene	µg/l	0.03	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Butyl benzyl phthalate	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number : 19-78337

Project / Site name: Ryebank

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

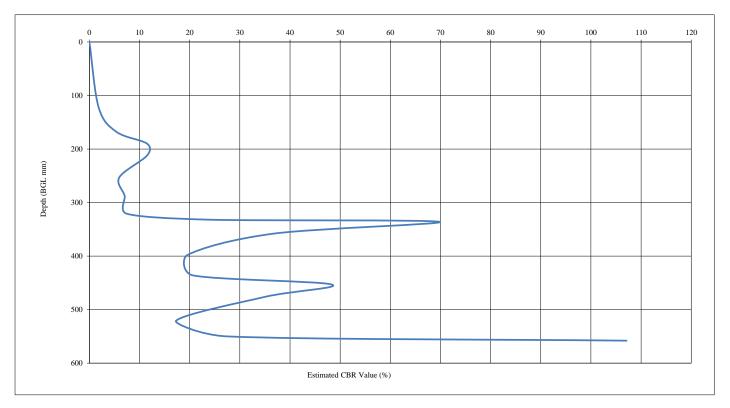
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Hexavalent chromium in water	Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method by continuous flow analyser. Accredited Matrices SW, GW, PW.	L080-PL	W	ISO 17025
Low level total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, AI=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Monohydric phenols in water - LOW LEVEL 1 ug/l	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	W	ISO 17025
Semi-volatile organic compounds in water	Determination of semi-volatile organic compounds in leachate by extraction in dichloromethane followed by GC-MS.	In-house method based on USEPA 8270	L102B-PL	w	NONE
TPH1 (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS.	In-house method	L070-PL	W	NONE
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE
Volatile organic compounds in water	Determination of volatile organic compounds in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

APPENDIX VII ORIGIN OF TIER I GENERIC ASSESSMENT CRITERIA

CONSTITUENT	ORIGIN OF RISK ASSESSMENT VALUE
Arsenic	2014 LQM/CIEH S4ULs
Cadmium	2014 LQM/CIEH S4ULs
Chromium	2014 LQM/CIEH S4ULs
Lead	2014 LQM/CIEH S4ULs
Mercury	2014 LQM/CIEH S4ULs – methylmercury
Nickel	2014 LQM/CIEH S4ULs
Selenium	2014 LQM/CIEH S4ULs
Copper	2014 LQM/CIEH S4ULs
Zinc	2014 LQM/CIEH S4ULs
Cyanide – Total	2014 LQM/CIEH S4ULs
Phenols – Total	2014 LQM/CIEH S4ULs
Naphthalene	
Acenaphthylene	
Acenaphthene	
Fluorene	
Phenanthrene	
Anthracene	
Fluoranthene	
Pyrene	
Benzo(a)Anthracene	
Chrysene	
Benzo(b/k)Fluoranthene	General assessment criteria (GAC) developed by CIEH/LQM Suitable 4 Use Levels with supporting data from SR3, SR7 and existing Tox report
Benzo(a)Pyrene	where applicable. 1% SOM.
Indeno(123-cd)Pyrene	
Dibenzo(a,h)Anthracene	
Benzo(ghi)Perylene	
TPH C ₅ -C ₆ (aliphatic)	
TPH C ₆ -C ₈ (aliphatic)	
TPH C ₈ -C ₁₀ (aliphatic)	
TPH C ₁₀ -C ₁₂ (aliphatic)	
TPH C ₁₂ -C ₁₆ (aromatic)	
TPH C ₁₆ -C ₂₁ (aromatic)	
TPH C ₂₁ -C ₃₅ (aromatic)	

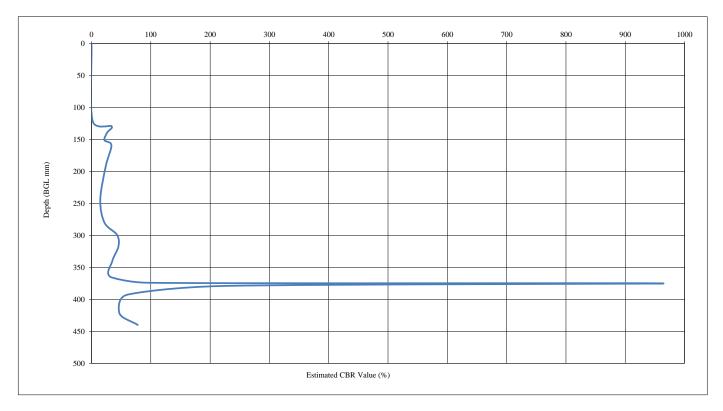

APPENDIX VIII DYNAMIC CONE PENETROMETER TEST CERTIFICATES

In Accordance with TRL Report PR/INT/277/04

Site Name	Ryebank	Test Date:	05.12.19
Site Ref	13533	Test Location:	Ryebank, Chorlton
Test No.:	DCP101	Easting:	0
Initial Depth (mm BGL):	0	Northing:	0
Final Depth (mm BGL):	558		

Estimated California Bearing Ratio Graph

Start Depth (mm) BGL	Finish Depth (mm) BGL	No. of Blows	Blows Per Layer	DCP mm/Blows	Ave Estimated Layer (CBR %)
0	212	4	4	53.00	4.54
212	321	7	3	36.33	6.77
321	558	33	26	9.12	29.21

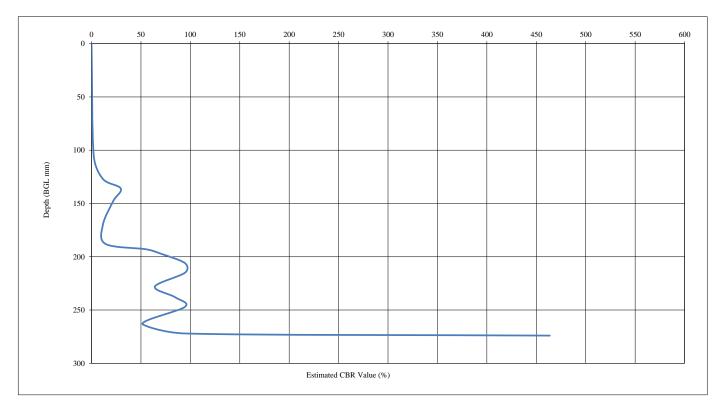

Terminated due to obstruction						
Site Engineer:	Checked By:	Date:	Approved By:	Date:		
JN	ВН	27/02/2020	MD	27/02/2020		
		1	1	1		

In Accordance with TRL Report PR/INT/277/04

Site Name	Ryebank	Test Date:	05.12.19
Site Ref	13533	Test Location:	Ryebank, Chorlton
Test No.:	DCP102	Easting:	0
Initial Depth (mm BGL):	0	Northing:	0
Final Depth (mm BGL):	440		

Estimated California Bearing Ratio Graph

Start Depth (mm) BGL	Finish Depth (mm) BGL	No. of Blows	Blows Per Layer	DCP mm/Blows	Ave Estimated Layer (CBR %)
0	129	2	2	64.50	3.69
129	365	26	24	9.83	26.96
365	440	48	22	3.41	82.60

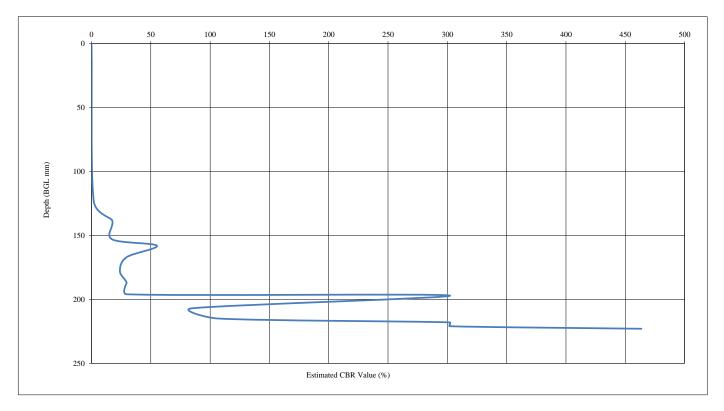

Terminated due to obstruction				
Site Engineer:	Checked By:	Date:	Approved By:	Date:
JN	ВН	27/02/2020	MD	27/02/2020

In Accordance with TRL Report PR/INT/277/04

Site Name	Ryebank	Test Date:	05.12.19
Site Ref	13533	Test Location:	Ryebank, Chorlton
Test No.:	DCP103	Easting:	0
Initial Depth (mm BGL):	0	Northing:	0
Final Depth (mm BGL):	274		

Estimated California Bearing Ratio Graph

Start Depth (mm) BGL	Finish Depth (mm) BGL	No. of Blows	Blows Per Layer	DCP mm/Blows	Ave Estimated Layer (CBR %)
0	136	3	3	45.33	5.36
136	188	6	3	17.33	14.81
188	274	32	26	3.31	85.28

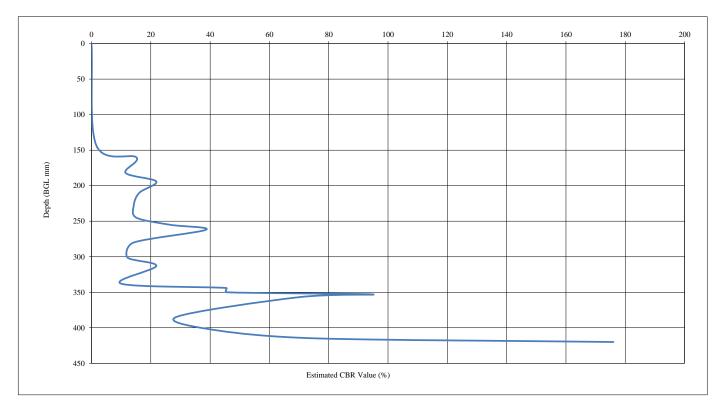

		Terminated Due to Obstruction.		
Site Engineer:	Checked By:	Date:	Approved By:	Date:

In Accordance with TRL Report PR/INT/277/04

Site Name	Ryebank	Test Date:	05.12.19
Site Ref	13533	Test Location:	Ryebank, Chorlton
Test No.:	DCP104	Easting:	0
Initial Depth (mm BGL):	0	Northing:	0
Final Depth (mm BGL):	223		

Estimated California Bearing Ratio Graph

Start Depth (mm) BGL	Finish Depth (mm) BGL	No. of Blows	Blows Per Layer	DCP mm/Blows	Ave Estimated Layer (CBR %)
0	138	2	2	69.00	3.44
138	196	8	6	9.67	27.45
196	223	24	16	1.69	173.70

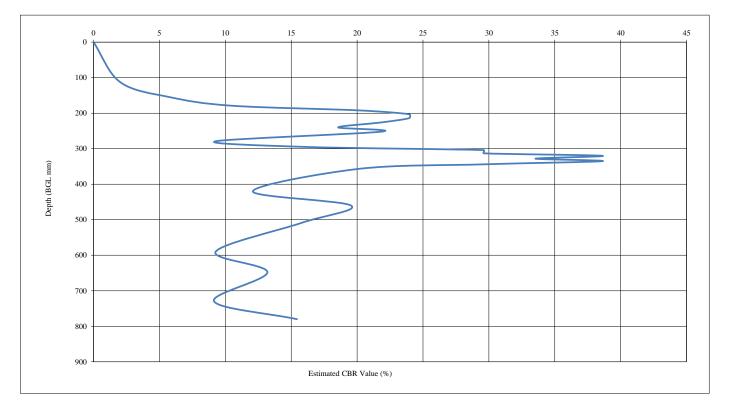

Terminated due to obstruction.				
Site Engineer:	Checked By:	Date:	Approved By:	Date:
JN	ВН	27/02/2020	MD	27/02/2020

In Accordance with TRL Report PR/INT/277/04

Site Name	Ryebank	Test Date:	05.12.19
Site Ref	13533	Test Location:	Ryebank, Chorlton
Test No.:	DCP105	Easting:	0
Initial Depth (mm BGL):	0	Northing:	0
Final Depth (mm BGL):	420		
• • •			

Estimated California Bearing Ratio Graph

Start Depth (mm) BGL	Finish Depth (mm) BGL	No. of Blows	Blows Per Layer	DCP mm/Blows	Ave Estimated Layer (CBR %)
0	160	2	2	80.00	2.94
160	338	13	11	16.18	15.92
338	420	29	16	5.13	53.69

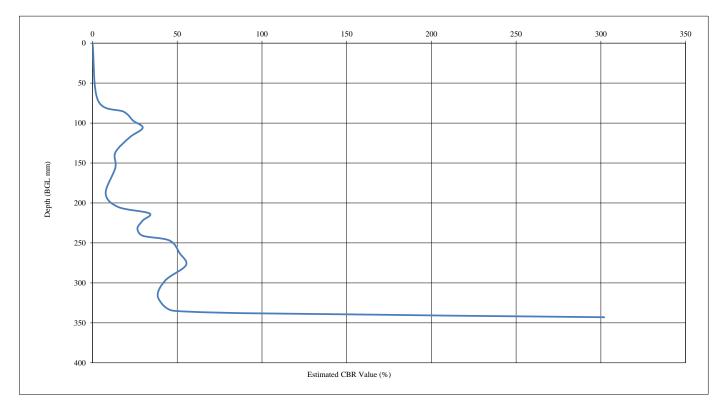

	Terminated due to obstruction.				
Site Engineer:	Checked By:	Date:	Approved By:	Date:	
JN	ВН	27/02/2020	MD	27/02/2020	

In Accordance with TRL Report PR/INT/277/04

Site Name	Ryebank	Test Date:	05.12.19
Site Ref	13533	Test Location:	Ryebank, Chorlton
Test No.:	DCP106	Easting:	0
Initial Depth (mm BGL):	0	Northing:	0
Final Depth (mm BGL):	780		

Estimated California Bearing Ratio Graph

Start Depth (mm) BGL	Finish Depth (mm) BGL	No. of Blows	Blows Per Layer	DCP mm/Blows	Ave Estimated Layer (CBR %)
0	179	3	3	59.67	4.01
179	420	21	18	13.39	19.45
420	780	39	18	20.00	12.73

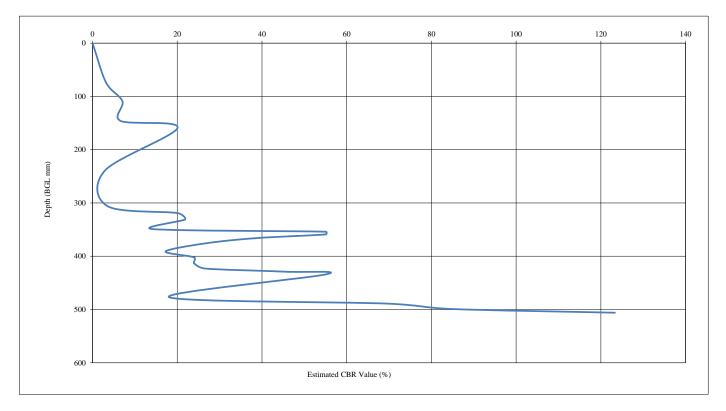

		Terminated due to obstrruction.		
Site Engineer:	Checked By:	Date:	Approved By:	Date:
JN	ВН	27/02/2020	MD	27/02/2020

In Accordance with TRL Report PR/INT/277/04

Site Name	Ryebank	Test Date:	05.12.19
Site Ref	13533	Test Location:	Ryebank, Chorlton
Test No.:	DCP107	Easting:	0
Initial Depth (mm BGL):	0	Northing:	0
Final Depth (mm BGL):	343		

Estimated California Bearing Ratio Graph

Start Depth (mm) BGL	Finish Depth (mm) BGL	No. of Blows	Blows Per Layer	DCP mm/Blows	Ave Estimated Layer (CBR %)
0	106	4	4	26.50	9.45
106	188	8	4	20.50	12.40
188	343	35	27	5.74	47.62

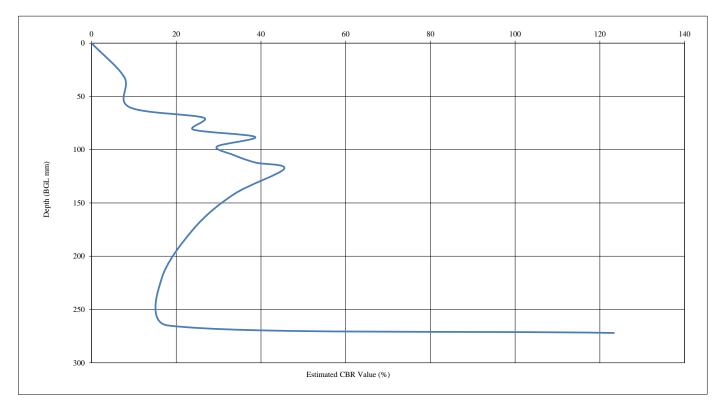

		Terminated due to obstruction		
Site Engineer:	Checked By:	Date:	Approved By:	Date:
JN	BH	27/02/2020	MD	27/02/2020

In Accordance with TRL Report PR/INT/277/04

Site Name	Ryebank	Test Date:	05.12.19
Site Ref	13533	Test Location:	Ryebank, Chorlton
Test No.:	DCP108	Easting:	0
Initial Depth (mm BGL):	0	Northing:	0
Final Depth (mm BGL):	506		

Estimated California Bearing Ratio Graph

Start Depth (mm) BGL	Finish Depth (mm) BGL	No. of Blows	Blows Per Layer	DCP mm/Blows	Ave Estimated Layer (CBR %)
0	146	3	3	48.67	4.97
146	306	6	3	53.33	4.51
306	506	31	25	8.00	33.53

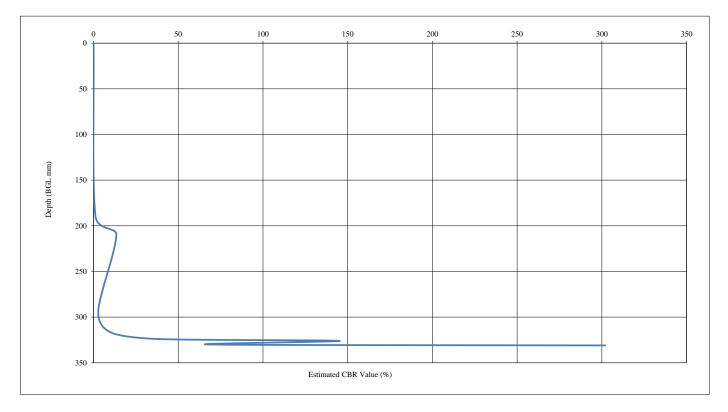

		Terminated due to obstruction		
Site Engineer:	Checked By:	Date:	Approved By:	Date:
JN	BH	27/02/2020	MD	27/02/2020

In Accordance with TRL Report PR/INT/277/04

Site Name	Ryebank	Test Date:	05.12.19
Site Ref	13533	Test Location:	Ryebank, Chorlton
Test No.:	DCP109	Easting:	0
Initial Depth (mm BGL):	0	Northing:	0
Final Depth (mm BGL):	272		

Estimated California Bearing Ratio Graph

Start Depth (mm) BGL	Finish Depth (mm) BGL	No. of Blows	Blows Per Layer	DCP mm/Blows	Ave Estimated Layer (CBR %)
0	60	2	2	30.00	8.29
60	118	9	7	8.29	32.31
118	272	24	15	10.27	25.76


		Terminated due to obstruction.		
Site Engineer:	Checked By:	Date:	Approved By:	Date:
JN	ВН	27/02/2020	MD	27/02/2020

In Accordance with TRL Report PR/INT/277/04

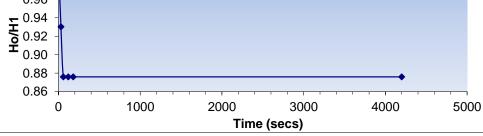
Site Name	Ryebank	Test Date:	05.12.19
Site Ref	13533	Test Location:	Ryebank, Chorlton
Test No.:	DCP110	Easting:	0
Initial Depth (mm BGL):	0	Northing:	0
Final Depth (mm BGL):	331		

Estimated California Bearing Ratio Graph

Start Depth (mm) BGL	Finish Depth (mm) BGL	No. of Blows	Blows Per Layer	DCP mm/Blows	Ave Estimated Layer (CBR %)
0	209	2	2	104.50	2.22
209	293	3	1	84.00	2.79
293	331	8	5	7.60	35.40

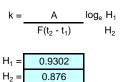
		Terminated due to obstruction		
Site Engineer:	Checked By:	Date:	Approved By:	Date:
JN	ВН	27/02/2020	MD	27/02/2020

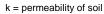
APPENDIX IX FALLING HEAD PERMEABILITY TEST CERTIFICATES

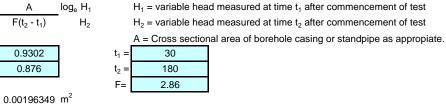

1

Ref-QT29-1

Falling Head Test Borehole: Test No: **CP101**


Contract No:	13-533	Casing Diameter: (m)	0.05
Contract Title:	Ryebank Road	Height of Casing:	0
Date of Test:	02/01/2020	Depth of Borehole: (m)	12.90

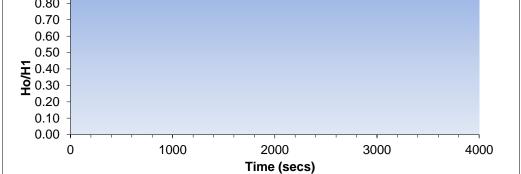

	Recorded Time Total Time				H/Ho	
Hours	Minutes	Seconds	(secs)	Depth (m)		
0	0	0	0	0	0	1.0000
0	0	30	30	0.9	30	0.9302
0	1	60	60	1.6	60	0.8760
0	2 3	120	120	1.6	120	0.8760
0	3	180	180	1.6	180	0.876
0	70	4200	4200	1.6	4200	0.876
1.00			-			
1.02						
1.00 🔶						
0.98 -						
0.96 -						
0.00						
_ 0.94 -						


General Approach

A =

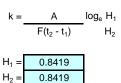
F = Intake Factor (figures 6 &7, BS5930:1999)

Coefficient of Permeability, k = 1.32E-05 m/s

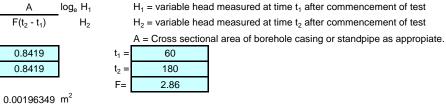

1

Ref-QT29-1

Falling Head Test Borehole: Test No: **CP102**


Contract No:	13-533	Casing Diameter: (m)	0.05
Contract Title:	Ryebank Road	Height of Casing:	0
Date of Test:	02/01/2020	Depth of Borehole: (m)	12.90

	Recorded Time		Total Time	H/Ho		
Hours	Minutes	Seconds	(secs)	Depth (m)		
0	0		0	2.04	0	0.8419
0	1		60	2.04	60	0.8419
0 0	3		180	2.04	180	0.8419
0	60		3600	2.04	3600	0.8419
0.90						
0.80	♦				•	


General Approach

A =

k =	permeability	of	soil
··· -	pointiousinty	0.	0011

F = Intake Factor (figures 6 &7, BS5930:1999)

Coefficient of Permeability, k = 1.56E-05 m/s

APPENDIX X GEOTECHNICAL TESTING

LABORATORY REPORT

4043

Contract Number: PSL19/7862

Report Date: 15 January 2020

Client's Reference: 13533

Client Name: E3P Heliport Business Park Liverpool Road Eccles Manchester M30 7RU

For the attention of: Ella Moss

Contract Title:	Ryebank
Date Received:	23/12/2019
Date Commenced:	23/12/2019
Date Completed:	15/1/2020

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

R Gunson (Director) A Watkins (Director) R Berriman (Quality Manager)

Ste

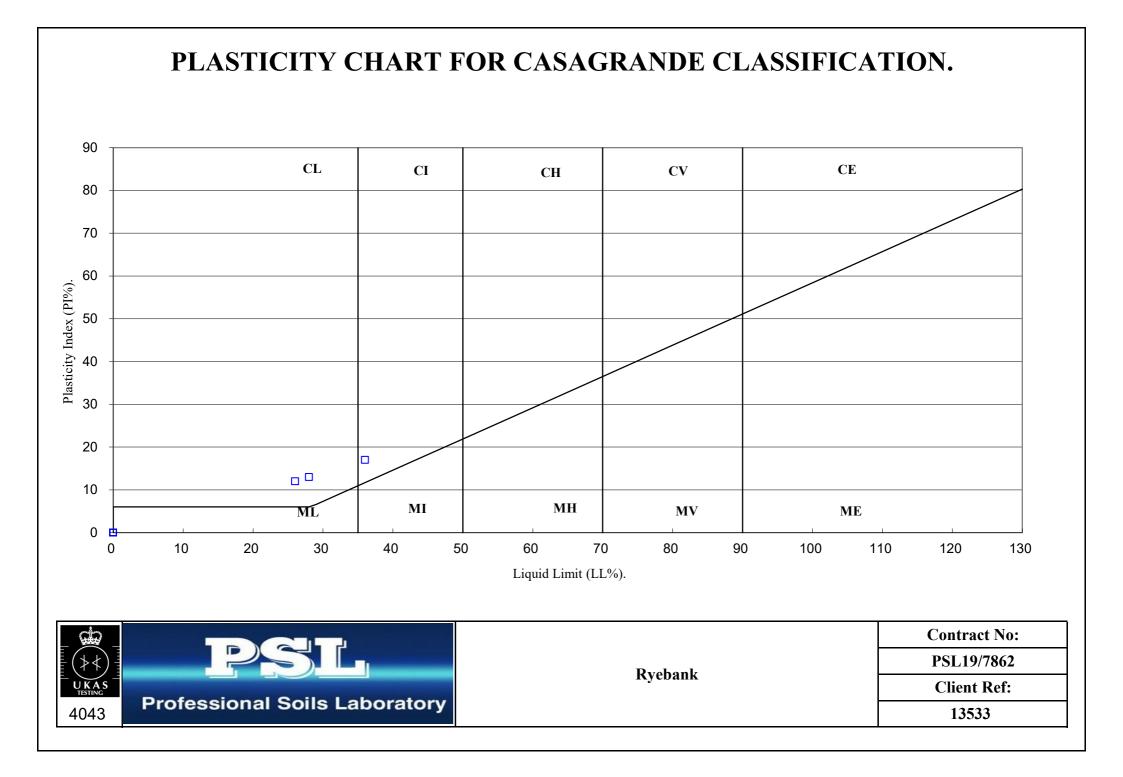
S Royle (Laboratory Manager) S Eyre (Senior Technician) L Knight (Senior Technician)

5 – 7 Hexthorpe Road, Hexthorpe, Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642 e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk Page 1 of

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

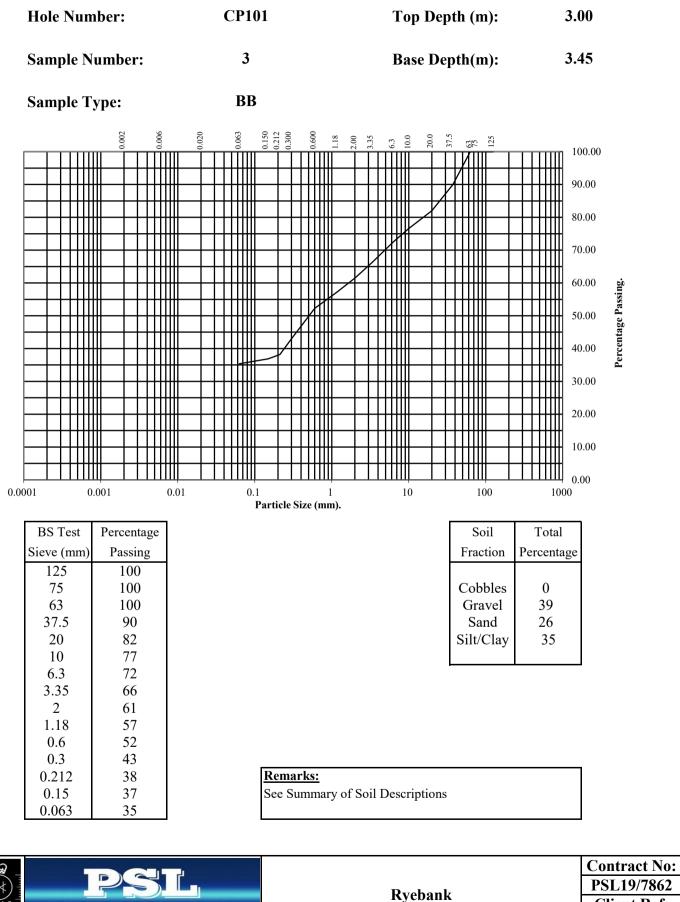
Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
CP101	3	BB	3.00	3.45	MADE GROUND dark grey very gravelly very sandy clay.
CP101	8	BB	8.00	8.45	MADE GROUND dark brown slightly sandy gravel.
CP102	1	BB	1.00	1.45	MADE GROUND dark brown sandy slightly clayey gravel with many cobbles.
CP102	3	BB	3.00	3.45	MADE GROUND dark brown sandy slightly clayey gravel with many cobbles.
CP102	5	BB	5.00	5.45	MADE GROUND brown sandy gravel.
TP120		BB	2.10		MADE GROUND dark brown very sandy clayey gravel.
TP129		BB	1.30		MADE GROUND brown clayey sand & gravel.
CP101		D	14.45	14.95	Dark brown gravelly very sandy CLAY.
CP102		D	12.50	12.95	Dark brown gravelly very sandy CLAY.
CP102		D	14.00	14.45	Dark brown gravelly very sandy CLAY.

SUMMARY OF SOIL CLASSIFICATION TESTS


(BS1377 : PART 2 : 1990)

	~ .		_	_	Moisture	Linear	Particle	Liquid	Plastic	Plasticity	Passing	
Hole	Sample	Sample	Тор	Base	Content	Shrinkage	Density	Limit	Limit	Index	.425mm	Remarks
Number	Number	Туре	Depth	Depth	%	%	Mg/m ³	%	%	%	%	
			m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		
CP101	3	BB	3.00	3.45	31							
CP101	8	BB	8.00	8.45	16							
CP102	1	BB	1.00	1.45	14							
CP102	3	BB	3.00	3.45	19							
TP120		BB	2.10		20							
TP129		BB	1.30		28							
CP101		D	14.45	14.95	11			28	15	13	78	Low plasticity CL.
CP102		D	12.50	12.95	10			26	14	12	77	Low plasticity CL.
CP102		D	14.00	14.45	16			36	19	17	84	Intermediate plasticity CI.

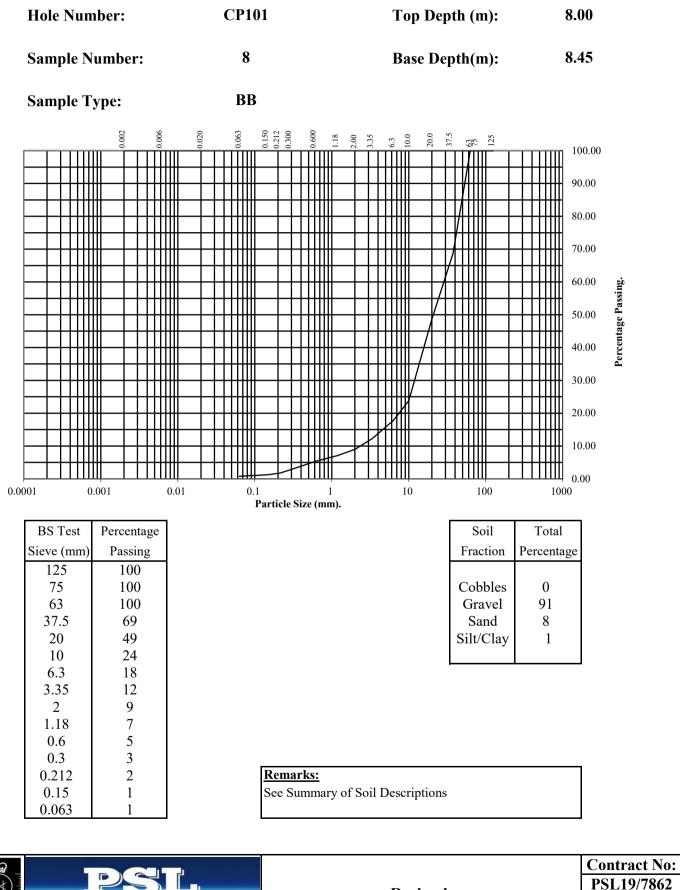
SYMBOLS : NP : Non Plastic


*: Liquid Limit and Plastic Limit Wet Sieved.

			Contract No:
		Ryebank	PSL19/7862
		e e	Client Ref:
4043	Professional Soils Laboratory		13533

BS1377 : Part 2 : 1990

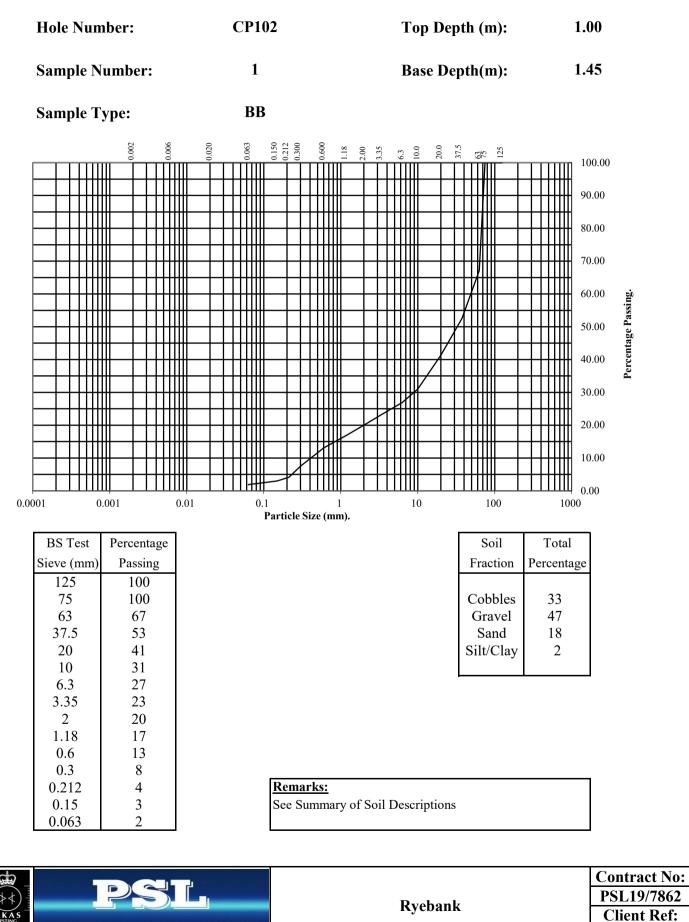
Wet Sieve, Clause 9.2



bank	PSL19/7862
Dank	Client Ref:
	13533

BS1377 : Part 2 : 1990

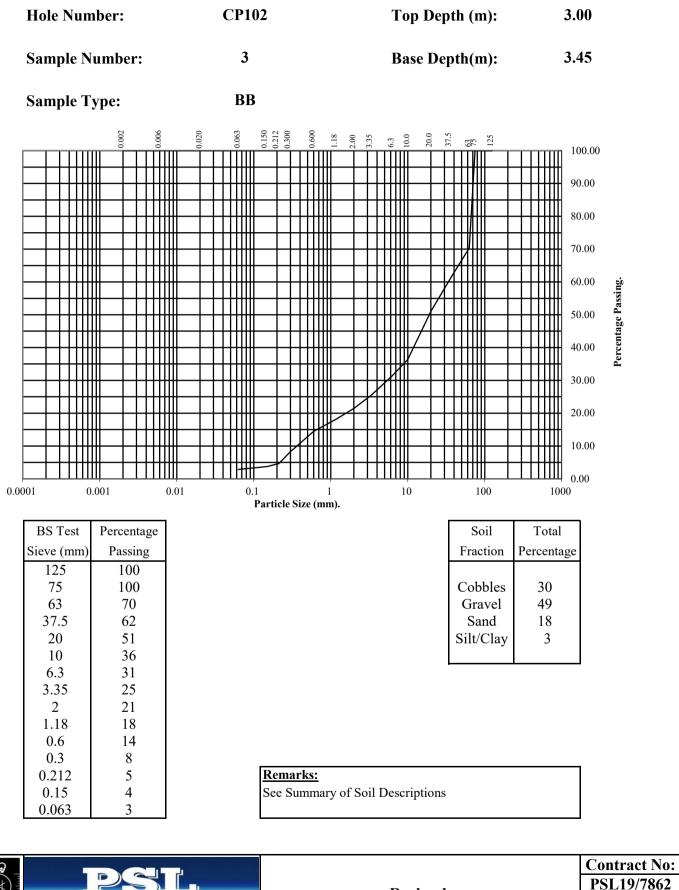
Wet Sieve, Clause 9.2


Ryebank

Client Ref:

BS1377 : Part 2 : 1990

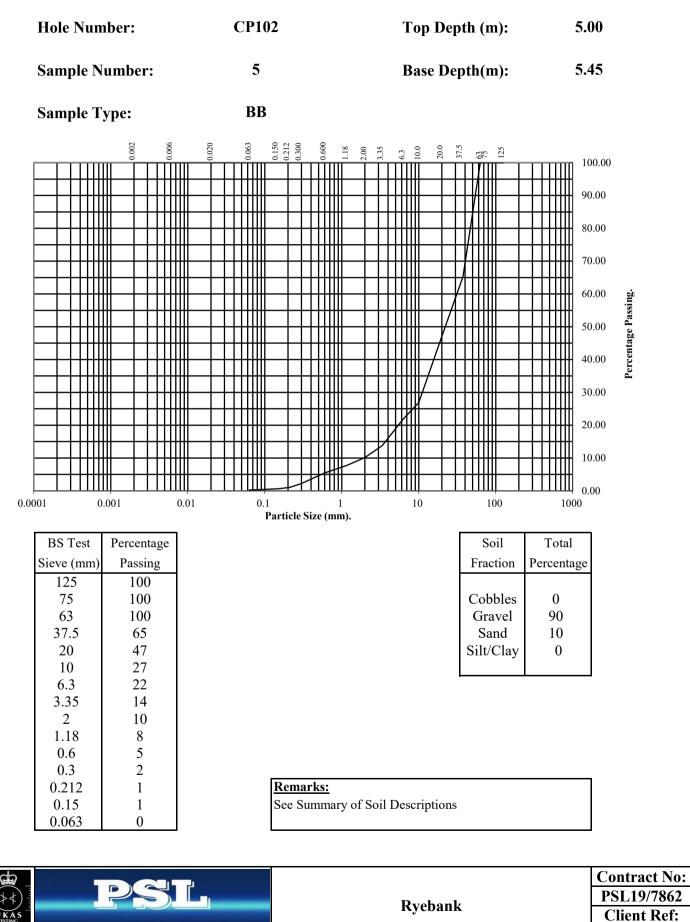
Wet Sieve, Clause 9.2



13533

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

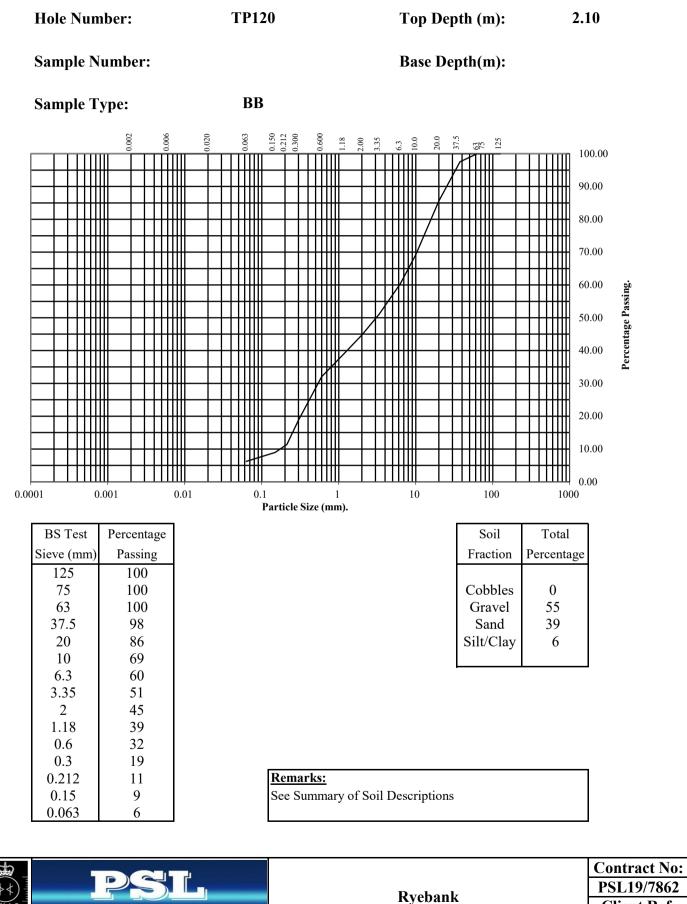


Professional Soils Laboratory

Dyshank	PSL19/7862
Ryebank	Client Ref:
	13533

BS1377 : Part 2 : 1990

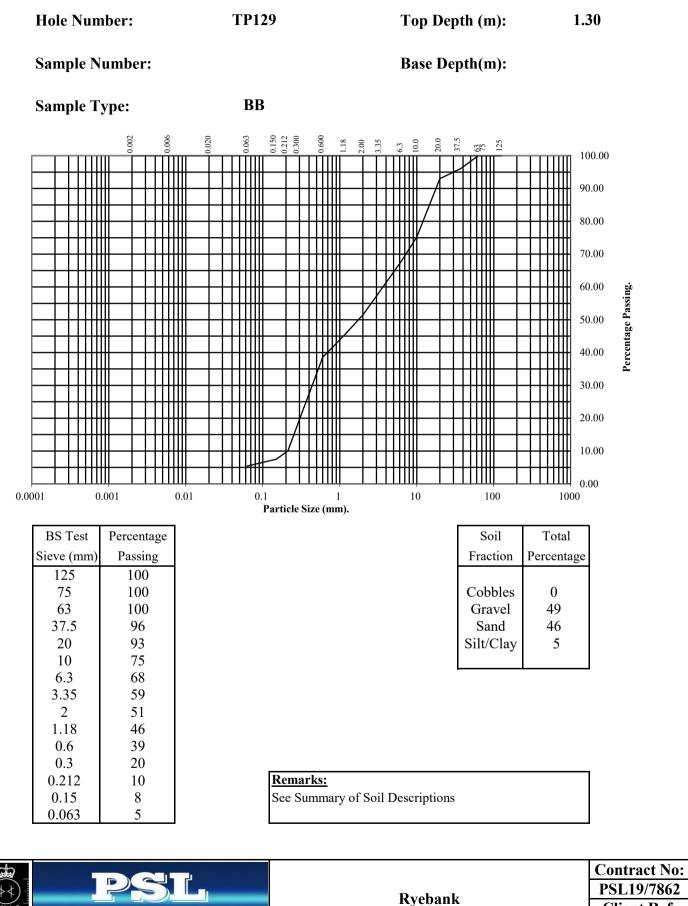
Wet Sieve, Clause 9.2



13533

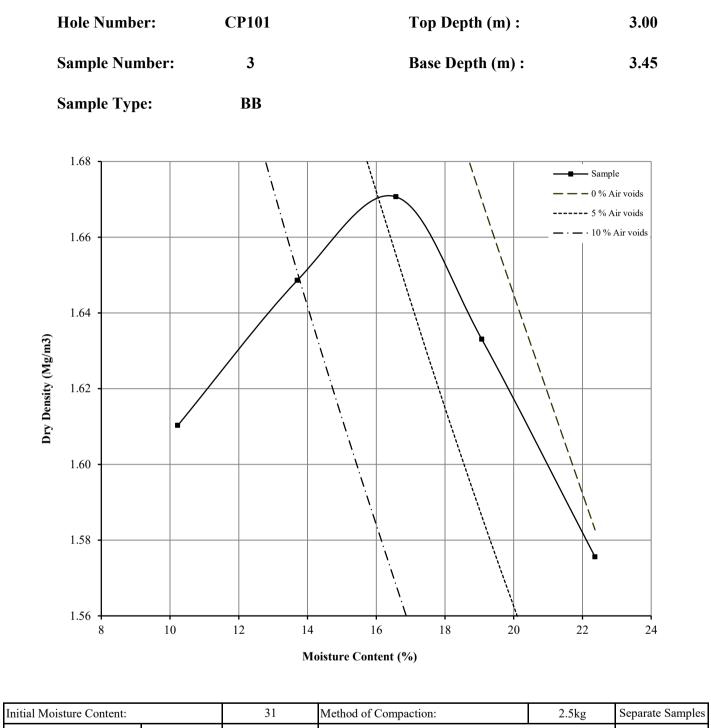
Professional Soils Laboratory

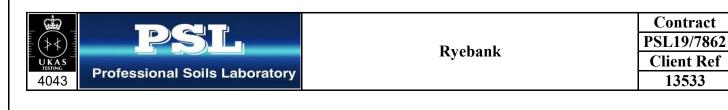
BS1377 : Part 2 : 1990

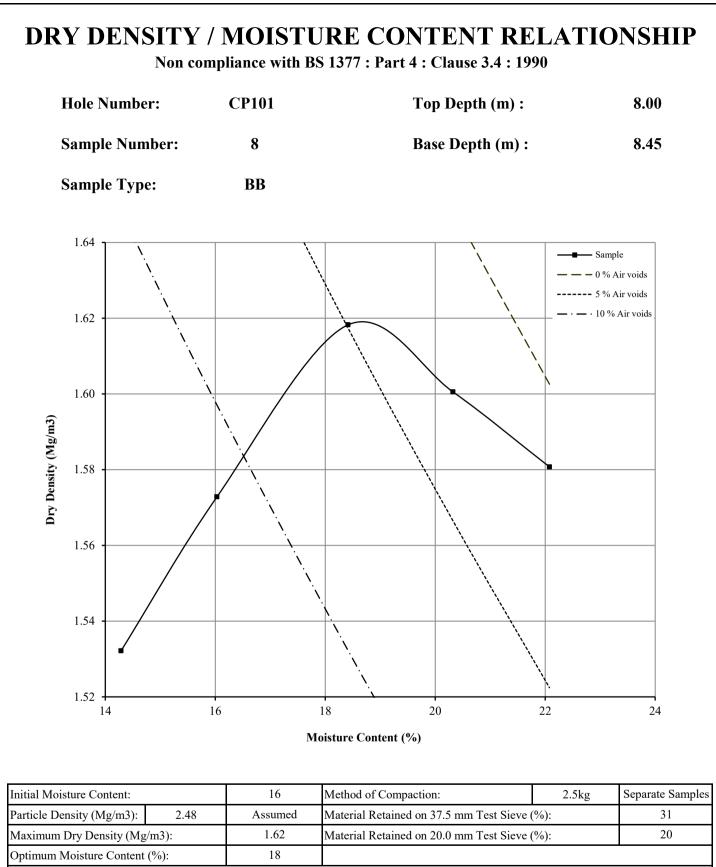

Wet Sieve, Clause 9.2

Professional Soils Laboratory

BS1377 : Part 2 : 1990

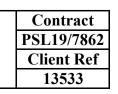

Wet Sieve, Clause 9.2

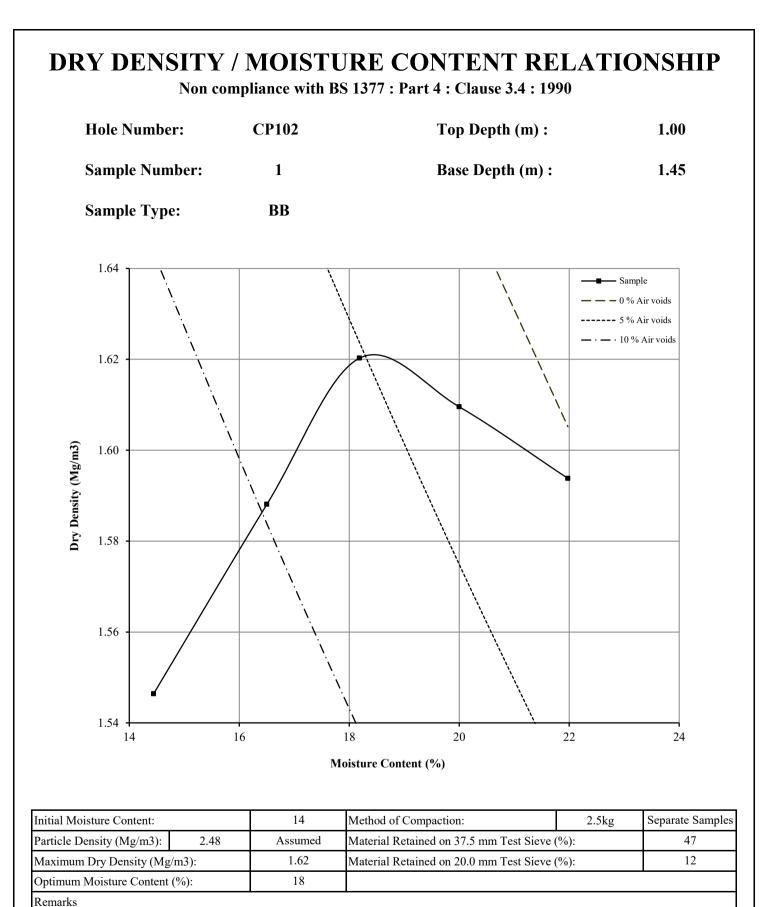

Professional Soils Laboratory


DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

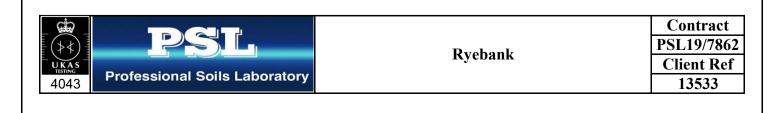
BS 1377 : Part 4 : Clause 3.4 : 1990

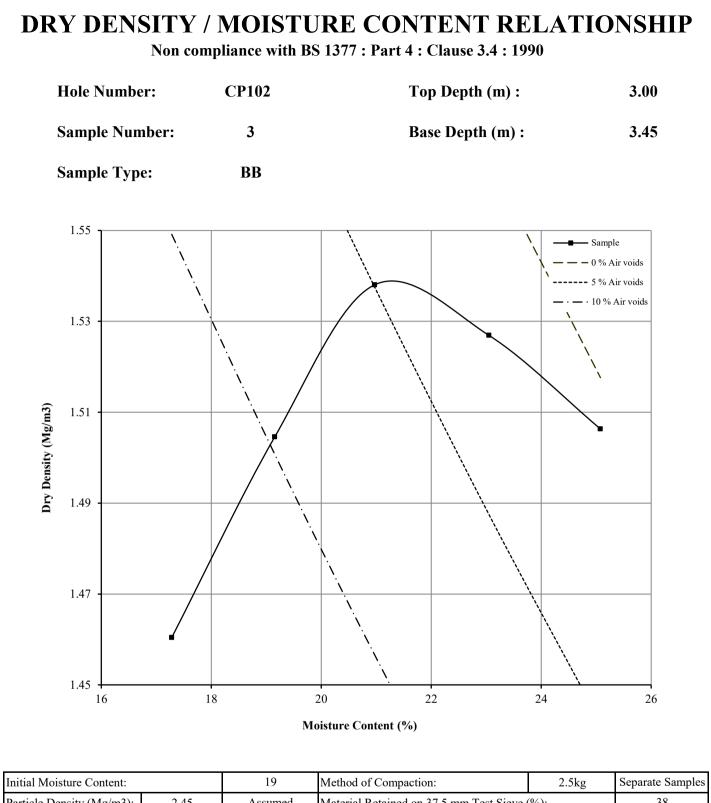
Initial Wolsture Content.		51	Wiethod of Compaction.	2.5Kg	Separate Samples	
Particle Density (Mg/m3):	2.45	Assumed	Material Retained on 37.5 mm Test Sieve (%):		10	
Maximum Dry Density (Mg/m3):		1.67	Material Retained on 20.0 mm Test Sieve (%):		8	
Optimum Moisture Content (%):		17				
Remarks						
See summary of soil descrip	tions.					

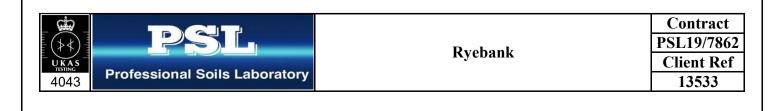


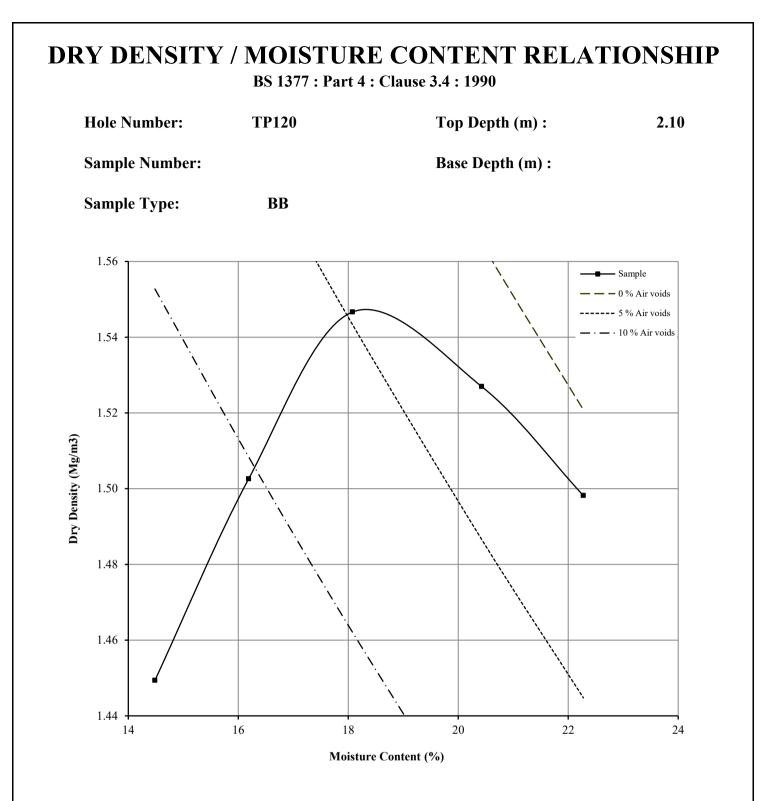


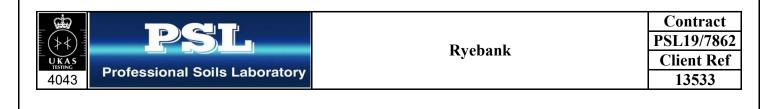
Remarks

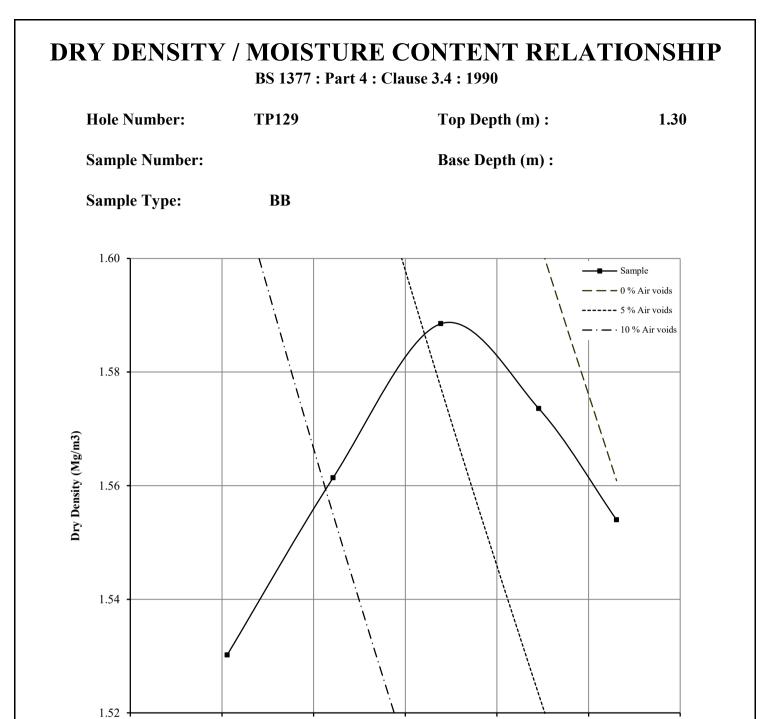

See summary of soil descriptions.

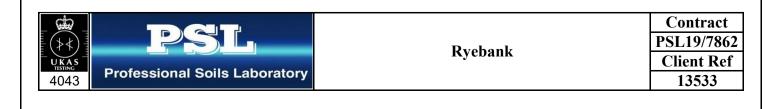





See summary of soil descriptions.




Initial Moisture Content:		19	Method of Compaction:	2.5Kg	Separate Samples
Particle Density (Mg/m3):	2.45	Assumed	Material Retained on 37.5 mm Test Sieve (%):		38
Maximum Dry Density (Mg/m3):		1.54	Material Retained on 20.0 mm Test Sieve (%):		11
Optimum Moisture Content (%):		21			
Remarks					
See summary of soil descrip	tions.				


Initial Moisture Content:		20	Method of Compaction:	2.5kg	Separate Samples
Particle Density (Mg/m3):	2.3	Assumed	Material Retained on 37.5 mm Test Sieve (%):		2
Maximum Dry Density (Mg/m3):		1.55	Material Retained on 20.0 mm Test Sieve (%):		12
Optimum Moisture Content (%):		18			
Remarks					
See summary of soil descrip	otions.				

Initial Moisture Content:		28	Method of Compaction:	2.5kg	Separate Samples
Particle Density (Mg/m3):	2.2	Assumed	Material Retained on 37.5 mm Test Sieve (%):		4
Maximum Dry Density (Mg/m3):		1.59	Material Retained on 20.0 mm Test Sieve (%):		3
Optimum Moisture Content (%):		15			
Remarks					
See summary of soil descrip	tions.				

Moisture Content (%)

